Solidification Behaviour of PA6/iPP Blends at High Cooling Rates
-
C. Colletti
, S. Piccarolo and A. Valenza
Abstract
The non isothermal crystallization behaviour of two model blends of immiscible polymers (an isotactic polypropylene and a polyamide-6) was examined by a quenching procedure within a range of cooling rates from 0.1 to above 1000°C/s in order to emulate the solidification conditions arising during polymer processing. The final structure of the blends was analyzed by density and WAXD and the transition from stable to metastable phases in the blends and the pure homopolymers was compared examining their dependence on cooling rate. This shows that crystallization in the blends is always faster since the transitions move to larger cooling rates. Observation of morphological details suggests that this can be due to enhanced nucleation at the interface. The density variation in the case of the polyamide-6 rich blend is larger than expected from an additive volume contribution which may be ascribed to development of microvoids at the interface. In the case of the isotactic polypropylene rich blend the additive volume contribution is consistent with experimental observations.
© 2000, Carl Hanser Verlag, Munich
Articles in the same Issue
- Editorial
- Sixth of a Series: Pioneer of Man-Made Fibers and Solution Spinning Louis-Marie-Hilaire Bernigaud, Comte de Chardonnet
- Screw Extrusion
- A Network Analysis of a Screw Mixing Zone
- Experimental and Numerical Study of Rhomboidal Mixing Sections
- Reactive Extrusion
- Bulk Polymerization of ∊-Caprolactone in Twin Screw Extruder
- Die Extrusion
- Computer Aided Optimisation of Profile Extrusion Dies
- Fibers and Films
- An Investigation of Venturi and Coanda Effects in Blown Film Cooling
- Blends
- Solidification Behaviour of PA6/iPP Blends at High Cooling Rates
- Polymer Blends with Fibrillar Phase Morphology Prepared by Self-Reinforcing Technique
- Molding
- Compressive Squeeze Flow of Generalized Newtonian Fluids with Apparent Wall Slip
- Comparative Study of Ziegler-Natta and Metallocene Based Polypropylenes in Injection Molding
- The Pressure-Volume-Temperature Behavior Polyethylene Melts
- Evaluation of the Thermal Behaviour of Injection Moulds
- Polymer Solidification under Pressure and High Cooling Rates
Articles in the same Issue
- Editorial
- Sixth of a Series: Pioneer of Man-Made Fibers and Solution Spinning Louis-Marie-Hilaire Bernigaud, Comte de Chardonnet
- Screw Extrusion
- A Network Analysis of a Screw Mixing Zone
- Experimental and Numerical Study of Rhomboidal Mixing Sections
- Reactive Extrusion
- Bulk Polymerization of ∊-Caprolactone in Twin Screw Extruder
- Die Extrusion
- Computer Aided Optimisation of Profile Extrusion Dies
- Fibers and Films
- An Investigation of Venturi and Coanda Effects in Blown Film Cooling
- Blends
- Solidification Behaviour of PA6/iPP Blends at High Cooling Rates
- Polymer Blends with Fibrillar Phase Morphology Prepared by Self-Reinforcing Technique
- Molding
- Compressive Squeeze Flow of Generalized Newtonian Fluids with Apparent Wall Slip
- Comparative Study of Ziegler-Natta and Metallocene Based Polypropylenes in Injection Molding
- The Pressure-Volume-Temperature Behavior Polyethylene Melts
- Evaluation of the Thermal Behaviour of Injection Moulds
- Polymer Solidification under Pressure and High Cooling Rates