Home Numerical Simulation of Viscous Flow in a Partially filled Co-rotating Twin Screw Extruder
Article
Licensed
Unlicensed Requires Authentication

Numerical Simulation of Viscous Flow in a Partially filled Co-rotating Twin Screw Extruder

  • G. Pokriefke
Published/Copyright: March 26, 2013
Become an author with De Gruyter Brill

Abstract

The free-surface flow of fully melted material in the conveying section of a co-rotating twin screw extruder has been simulated numerically with the Finite Volume Method and an Eulerian multiphase model. In this model the interface is captured in an implicit manner with the help of the local volume fraction in a cell.

The results presented here reveal the power and conveying characteristics of the twin screw configuration. Some interesting findings are discussed for the power characteristic in the fully filled state as well. The flow field and derived quantities are discussed with regards to the axial transport, symmetries in the flow field and locations of high energy dissipation. All results are compared to the fully filled state.

Additionally, a new term, the volume flux based “conveying degree”, is introduced in this paper. The difference to the volume-based degree of fill is pointed out.


Mail address: G. Pokriefke, Helmut-Schmidt-University, University of the Federal Armed Forces Hamburg, Institute of Mechanics, D-22039 Hamburg, Germany. E-mail:

References

1Rauwendaal, C.: Polymer Extrusion. Hanser-Publishers, Munich (2001)Search in Google Scholar

2Schuler, W., in: Der Doppelschneckenextruder. VDI-Verlag, Düsseldorf (1995)Search in Google Scholar

3Hensen, F., Knappe, W., Potente, H. (Eds): Handbuch der Kunststoffextrusionstechnik. Hanser Publishers, Munich (1989)Search in Google Scholar

4Werner, H.: Das Betriebsverhalten der zweiwelligen Knetscheibenpresse vom Typ ZKS bei der Verarbeitung von hochviskosen Flüssigkeiten. PhD Thesis, TU Munich (1976)10.1002/cite.330490427Search in Google Scholar

5Böhme, G., Wünsch, O.: Archive of Appl. Mech. 67, p. 167 (1997)10.1007/s004190050109Search in Google Scholar

6Wünsch, O., Kühn, R., Heidemeyer, P.: SPE ANTEC Tech. Papers, p. 338 (2003)Search in Google Scholar

7Mours, M. et al.: Intern. Polym. Process. 15, p. 124 (2000)Search in Google Scholar

8White, J. L.: Principles of Polymer Engineering Rheology. John Wiley & Sons, New York (1990)Search in Google Scholar

9Wünsch, O., Böhme, G.: Forschung im Ingenieurwesen66, p. 224 (2001)10.1007/s100100100056Search in Google Scholar

10Ishikawa, T., Kihara, S., Funatsu, K.: Polym. Eng. Sci., p. 357 (2000)10.1002/pen.11169Search in Google Scholar

11Booy, M. L.: Polym. Eng. Sci. 20, p. 1220 (1980)10.1002/pen.760201808Search in Google Scholar

12Tenge, S.: Dissipation und Wärmeübergang in der Meteringzone eines gleichläufigen Doppelschneckenextruders. PhD Thesis, University Munich (1998)10.1002/cite.330690924Search in Google Scholar

13Secor, R. M.: Polym. Eng. Sci. 26, p. 969 (1986)10.1002/pen.760261402Search in Google Scholar

14De Graaf, R. A., Woldringh, D. J., Janssen, L.: Advances in Polym. Techn. 18, p. 295 (1999)10.1002/(SICI)1098-2329(199924)18:4<295::AID-ADV1>3.0.CO;2-ZSearch in Google Scholar

15Seidl, V. et al.: Paper presented at the 5th World Conference on Applied Fluid Mechanics within SIM (2001)Search in Google Scholar

16Ferziger, J. H., Peric, M.: Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin (2002)10.1007/978-3-642-56026-2Search in Google Scholar

17Harlow, F. H., Welsh, J. E.: Phys. Fluids8, p. 2182 (1965)10.1063/1.1761178Search in Google Scholar

18Hirt, C. W., Nichols, B. D.: J. Comp. Phys. 39, p. 201 (1981)10.1016/0021-9991(81)90145-5Search in Google Scholar

19Osher, S., Sethian, J. A.: J. Comp. Phys. 79, p. 12 (1988)10.1016/0021-9991(88)90002-2Search in Google Scholar

20Raithby, G. D., Xu, W. X., Stubley, G. D.: Comp. Fluid Dynamics J. 4, p. 353 (1995)Search in Google Scholar

21Muzaferija, S., Perić, M.: Num. Heat Transfer Part B32, p. 369 (1997)10.1080/10407799708915014Search in Google Scholar

22The, J. L., Raithby, G. D., Stubley, G. D.: Num. Heat Transfer Part B26, p. 367 (1994)10.1080/10407799408914935Search in Google Scholar

23Böhme, G.: Z. Angew. Math. Mech. 76, p. 55 (1996)10.1002/zamm.19960760809Search in Google Scholar

24CFX-5.7 Documentation (2005)Search in Google Scholar

25Chhabra, R. P., Richardson, J. F.: Non-Newtonian Flow in the Process Industries. Butterworth-Heinemann, Oxford (1999)Search in Google Scholar

26Patankar, S. V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York (1980)Search in Google Scholar

27Barth, T. J., Jesperson, D. C.: AIAA-Paper 89-0366 (1989)Search in Google Scholar

28Zwart, P. J., Scheuerer, M., Bogner, M.: Paper presented at the ASTAR International Workshop on Advanced Numerical Methods for Multidimensional Simulation of Two-Phase-Flow, Germany (2003)Search in Google Scholar

29Pokriefke, G.: Proc. Appl. Math. Mech. 3, p. 418 (2003)10.1002/pamm.200310480Search in Google Scholar

30Pawlowski, J.: Transportvorgänge in Einwellenschnecken. Otto-Salle-Verlag, Frankfurt (1990)Search in Google Scholar

31Böhme, G., Pokriefke, G.: Acta Mechanica176, p. 197 (2005)10.1007/s00707-004-0207-xSearch in Google Scholar

32Pokriefke, G.: Numerische Analyse reibungsbehafteter Strömungen in teilgefüllten Extrudern. PhD Thesis, Helmut-Schmidt-University Hamburg (2005)Search in Google Scholar

33Böhme, G.: Strömungsmechanik nicht newtonscher Fluide, Teubner-Verlag, Stuttgart (2000)10.1007/978-3-322-80140-1Search in Google Scholar

34Böhme, G., Wünsch, O.: Z. Angew. Math. Mech. 81, p. 459 (2001)10.1002/zamm.20010811509Search in Google Scholar

35Wünsch, O., Böhme, G.: Archive of Appl. Mech. 70, p. 91 (2000)10.1007/s004199900042Search in Google Scholar

Received: 2005-8-24
Accepted: 2006-9-19
Published Online: 2013-03-26
Published in Print: 2007-03-01

© 2007, Carl Hanser Verlag, Munich

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.0104/html
Scroll to top button