Home Simulation of 3D Crystallization of Colloidal Nanoparticles on a Substrate during Drying
Article
Licensed
Unlicensed Requires Authentication

Simulation of 3D Crystallization of Colloidal Nanoparticles on a Substrate during Drying

  • M. Fujita and Y. Yamaguchi
Published/Copyright: March 26, 2013
Become an author with De Gruyter Brill

Abstract

This paper presents a simulation of 3D crystallization of colloidal nanoparticles on a substrate during drying. The translational motion and the rotational motion of nanoparticles are modeled by Langevin equation and the law of angular momentum conservation, respectively. Contact force, capillary force, Brownian force, van der Waals force, electrostatic force and fluid drag force are taken into consideration. The drying of colloid is expressed as a decrease of the colloid thickness with time. The drying process of a water solution of polystyrene nanoparticles on a flat substrate is investigated, so that a self-ordered 3D crystal of polystyrene nanoparticles is formed after drying. The crystallization is visualized with time, and vertical and planar structures of nanoparticles are evaluated temporally and quantitatively. The result indicates the primary mechanism of 3D crystallization of colloidal nanoparticles during drying, in which both layering in the vertical direction and planar crystallization take place at the same time.


Mail address: M. Fujita, Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. E-mail:

References

1Wilkinson, A. N., Ryan, A.: Polymer Processing and Structure Development. Kluwer Academic, Dordrecht, Boston, London (1998)Search in Google Scholar

2Corbierre, M. K., Cameron, N. S., Sutton, M., Mochrie, S. G. J., Lurio, L. B., Rühm, A., Lennox, R. B.: J. Am. Chem. Soc. 123, p. 10411 (2001)10.1021/ja0166287Search in Google Scholar

3Hussain, I., Brust, M., Papworth, A. J., Cooper, A. I.: Langmuir. 19, p. 4831 (2003)10.1021/la020710dSearch in Google Scholar

4Mbhele, Z. H., Salemane, M. G., van Sittert, C. G. C. E., Nedeljkovic, J. M., Djokovic, V., Luyt, A. S.: Chem. Mater. 15, p. 5019 (2003)10.1021/cm034505aSearch in Google Scholar

5Yablonovitch, E.: Phys. Rev. Lett. 58, p. 2059 (1987)10.1103/PhysRevLett.58.2059Search in Google Scholar

6Breen, M. L., Dinsmore, A. D., Pink, R. H., Qadri, S. B., Ratna, B. R.: Langmuir. 17, p. 903 (2001)10.1021/la0011578Search in Google Scholar

7Holland, B. T., Blanford, C. F., Stein, A.: Science281, p. 538 (1998)10.1126/science.281.5376.538Search in Google Scholar

8Wijnhoven, J. E. G. J., Vos, W. L.: Science282, p. 802 (1998)10.1126/science.281.5378.802Search in Google Scholar

9Xia, Y., Gates, B., Yin, Y., Lu, Y.: Adv. Mater. 12, p. 693 (2000)10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-JSearch in Google Scholar

10Denkov, N. D., Velev, O. D., Kralchevsky, P. A., Ivanov, I. B., Yoshimura, H., Nagayama, K.: Langmuir. 8, p. 3183 (1992)10.1021/la00048a054Search in Google Scholar

11Rodner, S. C., Wedin, P., Bergstrom, L.: Langmuir. 18, p. 9327 (2002)10.1021/la020259qSearch in Google Scholar

12Okubo, T., Chujo, S., Maenosono, S., Yamaguchi, Y.: J. Nanopart. Res. 5, p. 111 (2003)10.1023/A:1024427810668Search in Google Scholar

13Motte, L., Lacaze, E., Maillard, M., Pileni, M. P.: Langmuir. 16, p. 3803 (2002)10.1021/la9908283Search in Google Scholar

14Maenosono, S., Dushkin, C. D., Yamaguchi, Y., Nagayama, K., Tsuji, Y.: Col. Polym. Sci. 277, p. 1152 (1999)10.1007/s003960050504Search in Google Scholar

15Nishikawa, H., Maenosono, S., Yamaguchi, Y., Okubo, T.: J. Nanopart. Res. 5, p. 103 (2003)10.1023/A:1024489832472Search in Google Scholar

16Fujita, M., Nishikawa, H., Okubo, T., Yamaguchi, Y.: Jpn. J. Appl. Phys. 43, p. 4434 (2004)10.1143/JJAP.43.4434Search in Google Scholar

17Nishikawa, H., Morozumi, K., Hu, M., Okubo, T., Fujita, M., Yamaguchi, Y., Okubo, T.: J. Chem. Eng. Jpn. 38, p. 564 (2005)10.1252/jcej.38.564Search in Google Scholar

18Fujita, M., Yamaguchi, Y.: J. Chem. Eng. Jpn. 39, p. 83 (2006)10.1252/jcej.39.83Search in Google Scholar

19Cundall, P. A., Strack, O. D. L.: Geotechnique. 29, p. 47 (1979)10.1680/geot.1979.29.1.47Search in Google Scholar

20Tsuji, Y., Tanaka, T., Ishida, T.: Powder Tech. 71, p. 239 (1992)10.1016/0032-5910(92)88030-LSearch in Google Scholar

21Kralchevsky, P. A., Nagayama, K.: Particles at Fluid Interfaces and Membranes – Attachment of Colloid Particles and Proteins to Interfaces and Formation of Two-Dimensional Arrays. Elsevier, Amsterdam (2001)10.1016/S1383-7303(01)80041-7Search in Google Scholar

22Israelachvili, J. N.: Intermolecular and Surface Forces, Academic Press, London (1992)Search in Google Scholar

23Ermak, D. L., McCammon, J. A.: J. Chem. Phys. 69, p. 1352 (1978)10.1063/1.436761Search in Google Scholar

Received: 2006-5-6
Accepted: 2006-10-10
Published Online: 2013-03-26
Published in Print: 2007-03-01

© 2007, Carl Hanser Verlag, Munich

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.0988/html
Scroll to top button