Startseite Asymmetric Surface Roughness Formationon Moving Non-isothermal Liquid Coatings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Asymmetric Surface Roughness Formationon Moving Non-isothermal Liquid Coatings

  • M. Yamamura , T. Uchinomiya , Y. Mawatari und H. Kage
Veröffentlicht/Copyright: 26. März 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We present a lubrication model of thermo-capillary flows in moving volatile liquid film coatings. The forced air impingement from a slit nozzle onto the moving coating imposes an axi-symmetric surface temperature distribution, and thus the local surface-tension gradients on the liquid surface. Despite the symmetric temperature profile, local thickness variations became asymmetric and exhibited a particular ridge in downstream and a depression in upstream. The competing feature between the surface-tension-driven and the pressure-driven flows gives a characteristic growth and decay in the surface roughness as the temperature profile travels in the opposite direction to the moving coating. The model prediction showed that the surface roughness was first enhanced and then suppressed with increasing the impinging air velocity, suggesting some directions for achieving more uniform coatings at higher speeds.


Mail address: M. Yamamura, Department of Applied Chemistry, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan. E-mail:

References

1Orchard, S. E.: Appl. Sci. Res. A11 p. 451 (1962)Suche in Google Scholar

2Oron, A., Davis, S. H., Bankoff, S. G.: Reviews of Modern Physics69, p. 931 (1997)10.1103/RevModPhys.69.931Suche in Google Scholar

3Kheshgi, H. S., Scriven, L. E.: Chemical Engineering Science47, p. 797 (1988)Suche in Google Scholar

4Kheshgi, H. S.: AIChE Journal35, p. 1719 (1989)10.1002/aic.690351017Suche in Google Scholar

5Eres, M. H., Weidner, D. E., Schwartz, L. W.: Langmuir15, p. 1859 (1999)10.1021/la980414uSuche in Google Scholar

6Weidner, D. E., Schwartz, L. W., Eley, R. R.: Journal of Colloid and Interface Science179, p. 66 (1996)10.1006/jcis.1996.0189Suche in Google Scholar

7Schwartz, L. W., Roy, R. V., Eley, R. R., Petrash, S.: Journal of Colloid and Interface Science234, p. 363 (2001)10.1006/jcis.2000.7312Suche in Google Scholar

8Evans, P. L., Schwartz, L. W., Roy, R. V.: Journal of Colloid and Interface Science227, p. 191 (2000)10.1006/jcis.2000.6877Suche in Google Scholar

9Joos, F. M.: AIChE Journal42, p. 623 (1996)10.1002/aic.690420304Suche in Google Scholar

10Iyer, R. R., Bousfield, D. W.: Chemical Engineering Science51, p. 4611 (1996)10.1016/0009-2509(96)00318-1Suche in Google Scholar

11Blunk, R. H. J., Wilkes, J. O.: AIChE Journal47, p. 779 (2001)10.1002/aic.690470404Suche in Google Scholar

12Armendariz, J., Matalon, M.: Physics of Fluids15, p. 1122 (2003)10.1063/1.1562939Suche in Google Scholar

13Edmonstone, B. D., Matar, O. K.: Journal of Colloid and Interface Science274, p. 183 (2004)10.1016/j.jcis.2004.02.080Suche in Google Scholar

14Gramlich, C. M., Kalliadasis, S., Homsy, G. M., Messer, C.: Physics of Fluids14, p. 1841 (2002)10.1063/1.1476672Suche in Google Scholar

15Martin, H.: Advances in Heat Transfer13, p. 1 (1977)10.1016/S0065-2717(08)70221-1Suche in Google Scholar

Received: 2006-5-7
Accepted: 2006-10-10
Published Online: 2013-03-26
Published in Print: 2007-03-01

© 2007, Carl Hanser Verlag, Munich

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.0062/html
Button zum nach oben scrollen