Quantitative Analysis for Polymer Degradation in the Extrusion Process
-
H. Kometani
Abstract
Polymer degradation in the extrusion process decreases quality and productivity. For this reason, it is necessary to prevent polymer degradation. In the extrusion process, polymer degradation is caused by oxidation. It depends on the processing temperature and the amount of dissolved oxygen in the molten polymer. Therefore, a quantitative analysis of these factors is required.
As for the degradation characteristics of the material used in this study, temperature and oxygen concentration dependency of the oxidation rate could be quantitatively characterized with an apparatus to evaluate polymer degradation which utilized chemiluminescence generated by an oxidation reaction.
Moreover, an online measuring apparatus to analyze dissolved gas in the extruded molten polymer was developed. With this apparatus, the volume ratio of dissolved gases (N2, O2 etc.) to the extruded molten polymer could be quantitatively analyzed and the quality of the extruded molten polymer evaluated.
With this apparatus, dissolved nitrogen (an index of entrained air) was analyzed with a full-flight screw and a barrier screw. Furthermore, observation of cross sectional views in the screw channel obtained from the cooling experiment under the operating conditions was carried out for the full-flight screw and the barrier screw. With the full-flight screw, break up phenomenon (collapse of solid polymer) occurred in the screw channel and the amount of nitrogen increased. With the barrier screw, the amount of nitrogen decreased because of prevention of the break up phenomenon in the screw channel.
Consequently, it is shown that the use of the barrier screw is suitable for oxygen reduction in the molten polymer, which is a factor in causing polymer degradation.
References
1 Ashby, G. E.: J. Polym. Sci.50, p.99(1961).10.1002/pol.1961.1205015312Suche in Google Scholar
2 Schard, M. P., Russell, C. A.: J. Appl. Polym. Sci.8, p.985(1964).10.1002/app.1964.070080234Suche in Google Scholar
3 George, G. A.: Polym. Deg. Stab.1, p.217(1979).10.1016/0141-3910(79)90018-1Suche in Google Scholar
4 George, G. A., Egglestone, G. T., Riddell, S. Z.: Polym. Eng. Sci.23, p.412(1983).10.1002/pen.760230708Suche in Google Scholar
5 George, G. A., Schweinsberg, D. P.: J. Appl. Polym. Sci.33, p.2281(1987).10.1002/app.1987.070330702Suche in Google Scholar
6 George, G. A., Ghaemy, M.: Polym. Deg. Stab.34, p.37(1991).10.1016/0141-3910(91)90110-DSuche in Google Scholar
7 Celina, M., George, G. A.: Polym. Deg. Stab.50, p.89(1995).10.1016/0141-3910(95)00136-ASuche in Google Scholar
8 Zlatkevich, L.: J. Polym. Sci., Polym. Phys.23, p.1691(1985).Suche in Google Scholar
9 Zlatkevich, L.: Polym. Deg. Stab.19, p.51(1987).10.1016/0141-3910(87)90012-7Suche in Google Scholar
10 Billingham, N. C.: J. Polym. Sci., Polym. Phys.28, p.257(1990).10.1002/polb.1990.090280301Suche in Google Scholar
11 Billingham, N. C., Then, E. T. H., Gijsman, P. J.: Polym. Deg. Stab.34, p.263(1991).10.1016/0141-3910(91)90122-8Suche in Google Scholar
12 Kron, A., Stenberg, B., Reitberger, T., Billingham, N. C.: Polym. Deg. Stab.53, p.119(1996).10.1016/0141-3910(96)00079-1Suche in Google Scholar
13 Billingham, N. C., Then, E. T. H., Kron, A.: Polym. Deg. Stab.55, p.339(1997).10.1016/S0141-3910(96)00169-3Suche in Google Scholar
14 Kron, A., Stenberg, B., Reitberger, T.: Prog. Rubber. Plast. Technol.13, p.81(1997).Suche in Google Scholar
15 Lacey, D. J., Dudller, V.: Polym. Deg. Stab.51, p.109(1996).10.1016/0141-3910(95)00192-1Suche in Google Scholar
16 Konoma, F., Osawa, Z.: Polym. Photochem.7, p.469(1986).10.1016/0144-2880(86)90016-3Suche in Google Scholar
17 Osawa, Z., Wu, S., Konoma, F.: Polym. Deg. Stab.22, p.97(1988).10.1016/0141-3910(88)90034-1Suche in Google Scholar
18 Yoshii, F., Sasaki, T., Makuuchi, K., Tamura, N.: J. Appl. Polym. Sci.30, p.3339(1985).10.1002/app.1985.070300816Suche in Google Scholar
19 Kihara, H., Hosoda, S.: Polm. J.22, p.763(1990).10.1295/polymj.22.763Suche in Google Scholar
20 Kihara, H., Yabe, T., Hosoda, S.: Polm. Bull.29, p.369(1992).10.1007/BF00944833Suche in Google Scholar
© 2006, Hanser Publishers, Munich
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Dedication of the Special Issue of International Polymer Processing in Honor of Prof. James Lindsay White, Editor Emeritus and Founding Editor
- Invited Papers
- Melt Compounding of Polymeric Nanocomposites
- Experiments and Analysis of Effect of Calender Gaps on Melting of PVC Powders in an Intermeshing Counter-rotating Twin-screw Extruder
- Quantitative Analysis for Polymer Degradation in the Extrusion Process
- Visualization of Flow Instabilities for High Density Polyethylene
- Heat Transfer through Metal Walls of Finite Thickness
- Simulation and Experimental Verification of Crystallization and Birefringence in Melt Spinning of PET
- Structural Development and Properties of Melt Spun Poly(butylene succinate) and Poly(butylene terephthalate-co-succinate-co-adipate) Biodegradable Fibers
- External Calibration in PA12 Tube Extrusion
- Tubular Film Extrusion Stability of Metallocene Linear Low Density Polyethylene
- Multilayer Barrier Film of Biaxially Oriented PA6/EVOH by Double Bubble Tubular Film Process
- PPS News
- PPS News
- Seikei-Kakou Abstracts
- Seikei-Kakou Abstracts
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Dedication of the Special Issue of International Polymer Processing in Honor of Prof. James Lindsay White, Editor Emeritus and Founding Editor
- Invited Papers
- Melt Compounding of Polymeric Nanocomposites
- Experiments and Analysis of Effect of Calender Gaps on Melting of PVC Powders in an Intermeshing Counter-rotating Twin-screw Extruder
- Quantitative Analysis for Polymer Degradation in the Extrusion Process
- Visualization of Flow Instabilities for High Density Polyethylene
- Heat Transfer through Metal Walls of Finite Thickness
- Simulation and Experimental Verification of Crystallization and Birefringence in Melt Spinning of PET
- Structural Development and Properties of Melt Spun Poly(butylene succinate) and Poly(butylene terephthalate-co-succinate-co-adipate) Biodegradable Fibers
- External Calibration in PA12 Tube Extrusion
- Tubular Film Extrusion Stability of Metallocene Linear Low Density Polyethylene
- Multilayer Barrier Film of Biaxially Oriented PA6/EVOH by Double Bubble Tubular Film Process
- PPS News
- PPS News
- Seikei-Kakou Abstracts
- Seikei-Kakou Abstracts