Startseite Experiments and Analysis of Effect of Calender Gaps on Melting of PVC Powders in an Intermeshing Counter-rotating Twin-screw Extruder
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experiments and Analysis of Effect of Calender Gaps on Melting of PVC Powders in an Intermeshing Counter-rotating Twin-screw Extruder

  • D. Wang und K. Min
Veröffentlicht/Copyright: 1. März 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Our ultrasound in-line monitoring studies revealed that dispersion or dissipation melting mechanism played a dominant role during melting of unplasticized polyvinyl chloride (uPVC) in an intermeshing counter-rotating twin-screw extruder. It is found that calendering effect between two screws contributes to the melting of PVC particles, and results in dispersion or dissipation melting. Thus, in this paper, a dispersed melting model in calender gaps is considered to predict polymer melting length in terms of numbers of calender gaps. Effects of screw geometries (channel depth, calender gap clearance) and processing conditions including screw speed and leakage flow on melting length are discussed for particle-filled fluid models. The calculated results are compared with experimental observations by both “screw pulling out” method and ultrasound in-line monitoring method. Ultrasound in-line monitoring provides a solution to overcome the time delay occurred in screw-pulling out method.


2 Mail address: K. Min, Institute of Polymer Engineering, University of Akron, Akron, OH 44325-0301, U.S.A. E-mail:

References

1 Janssen, L. P. B. M.: Twin Screw Extrusion. Elsevier, New York(1978).Suche in Google Scholar

2 Covas, A., Gilbert, M., Marshall, D. E.: Plastics and Rubber Processing and Applications9, 2, p.107(1988).Suche in Google Scholar

3 Henson, J. H. L., Whelan, A.: Developments in PVC Technology. John Wiley & Sons, New York(1973).Suche in Google Scholar

4 Wilczynski, K., White, J. L.: Int. Polym. Process.16, p.257(2001).10.3139/217.1645Suche in Google Scholar

5 Wilczynski, K., White, J. L.: Poly. Eng. Sci.43, p.1715(2003).10.1002/pen.10145Suche in Google Scholar

6 Wang, D. B., Min, K.: SPE ANTEC Tech. Papers62, p.1266(2004).Suche in Google Scholar

7 Wang, D. B., Min, K.: Polymer Eng. Sci.45, p.998(2005).10.1002/pen.20364Suche in Google Scholar

8 Kalyon, D., Gevgilili, Shah, A.: Int. Polym. Process.19, p.129(2004).10.3139/217.1822Suche in Google Scholar

9 Rauwendaal, C.: Adv. Polym. Technol.15, p.135(1996).10.1002/(SICI)1098-2329(199622)15:2<135::AID-ADV3>3.0.CO;2-WSuche in Google Scholar

10 Gogos, C. C., Tadmor, Z., Kim, M. H.: Adv. Polym. Technol.17, p.285(1998).10.1002/(SICI)1098-2329(199824)17:4<285::AID-ADV1>3.0.CO;2-NSuche in Google Scholar

Received: 2005-06-21
Accepted: 2005-12-13
Published Online: 2013-03-01
Published in Print: 2006-03-01

© 2006, Hanser Publishers, Munich

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.0080/html
Button zum nach oben scrollen