Startseite Heat Transfer through Metal Walls of Finite Thickness
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Heat Transfer through Metal Walls of Finite Thickness

The Art of Correctly Quenching a Polymer Melt at a Metal Wall
  • M. Janeschitz-Kriegl , H. Janeschitz-Kriegl , G. Eder und R. Forstner
Veröffentlicht/Copyright: 1. März 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A quenching technique is scrutinized, where the surface of a polymer melt is brought into contact with a metal wall of a well defined lower temperature at time zero. Usually, this wall temperature has approximately been kept constant with the aid of a streaming heat transfer fluid. It turns out, however, that an exactly invariable wall temperature or a finite Biot number (finite heat transfer coefficient to the cooling fluid) are inadequate assumptions. However, an exact interface temperature is to berealized, if the crystallization kinetics of the polymer is to be investigated painstakingly at this interface. The reason for this requirement lies in the fact that the said kinetics is extremely sensitive to small temperature changes. The present contribution shows that a water cooled metal wall of small thickness is inadequate for the purpose. A rather thick metal wall, which is preheated to the required temperature and thermally insulated at the outside, is clearly preferable. Copper is better than steel.


2 Mail address: M. Janeschitz-Kriegl, Heat Transfer Consult, Doelenstraat 65, NL-2611NS, Delft, The Netherlands E-mail:

References

1 Eder, G., Janeschitz-Kriegl, H., in: Processing of Polymers, Materials, Science and Technology. VCH, Weinheim(1997).Suche in Google Scholar

2 Ratajski, E., Janeschitz-Kriegl, H., in: Colloid. & Polym. Sci.274, p.938(1996).10.1007/BF00656623Suche in Google Scholar

3 Liedauer, S., Ede, G., Janeschitz-Kriegl, H., Jerschow, P., Geymayer, W., Ingolic, E.: Intern. Polym. Proc.8(1996)236.10.3139/217.930236Suche in Google Scholar

4 Schwerdtfeger, K., in: Advanced Physical Chemistry for Process Metallurgy. Sano, N., Lu, W.-K., Riboud, P. V. (Eds.) Academic Press, New York(1997).Suche in Google Scholar

5 Janeschitz-Kriegl, H.: Polym. Mat. Sci. & Eng.81, p.321(1999).Suche in Google Scholar

6 Delauney, D., Le Bot, P., Fulchiron, R., Luye, J. F., Regnier, G.: Polym. Eng. Sci.40, p.1682(2000).10.1002/pen.11300Suche in Google Scholar

7 Dittus, F. W., L. M. K.Boelter: Heat Transfer in Automobile radiators of tubular type, Univ. of California Berkeley. Publications on Engineering, Berkeley(1930).Suche in Google Scholar

8 Van Krevelen, D. W.: Properties of Polymers. Elsevier, New York(1990).Suche in Google Scholar

9 Bandrup, J., Immergut, H.: Polymer HandbookJohn Wiley, New York(1990).Suche in Google Scholar

10 Ullmann, F.: Enzyklopaedie der techn. Chemie. Elsevier, New York(1990).Suche in Google Scholar

Received: 2005-07-17
Accepted: 2005-10-07
Published Online: 2013-03-01
Published in Print: 2006-03-01

© 2006, Hanser Publishers, Munich

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.0091/html
Button zum nach oben scrollen