Startseite PLLA Morphology Controlled by Dry-cast Process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

PLLA Morphology Controlled by Dry-cast Process

  • B. Meng , F. Z. Cui , Q. Cai und Y. Zhang
Veröffentlicht/Copyright: 6. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The influence of solvent evaporation rate, in the dry-casting process, on crystallinity and morphology of crystallizable polymeric membrane was studied. Poly-l-lactic acid (PLLA) was taken as an example. The membranes were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). By controlling the solvent evaporation rate, samples with various crystallinities were prepared. From higher to lower crystallinity the membranes exhibit three types of surface morphology in sequence: granule, stripe and smooth.


Mail address: C. Fuzhai, Department of Materials Science & Engineering, Tsinghua University, Beijing 100084, P. R. China. E-mail:

References

1Kesting, R. E.: Synthetic Polymeric Membrane. Wiley, New York (1985)Suche in Google Scholar

2Li, D. P., Wang, X. H., Meng, B., Cui, F. Z.: Mater. Sci. Forum. 423, p. 347 (2003)10.4028/www.scientific.net/MSF.423-425.347Suche in Google Scholar

3Huda, M. S., Yasui, M., Mohri, N., Fujimura, T., Kimura, Y.: Mater. Sci. Eng. 333, p. 98 (2002)10.1016/S0921-5093(01)01834-2Suche in Google Scholar

4Sasaki, T., Yamamoto, Y., Takahashi, T.: Polym. J. 32, p. 263 (2000)10.1295/polymj.32.263Suche in Google Scholar

5Castellari, C., Ottani, S.: J. Membr. Sci. 9, p. 29 (1981)10.1016/S0376-7388(00)85115-7Suche in Google Scholar

6Zeman, L., Fraser, T.: J. Membr. Sci. 87, p. 267 (1994)10.1016/0376-7388(94)87033-0Suche in Google Scholar

7Huang, R. Y. M., Feng, X.: J. Appl. Polym. Sci. 57, p. 613 (1995)10.1002/app.1995.070570511Suche in Google Scholar

8Young, T. H., Huang, J. H., Chuang, W. Y.: Eur. Polym. J. 38: 63 (2002)10.1016/S0014-3057(01)00183-5Suche in Google Scholar

9Field, R. J., Burger, M. (Eds.): Oscillations and Traveling Waves in Chemical Systems. Wiley Interscience, New York (1985)Suche in Google Scholar

10Nicolis, G., Prigogine, I.: Self-Organization in Non-Equilibrium Systems. New York, Wiley Interscience (1977)Suche in Google Scholar

11Christopher, H., Douglas, H. A., Cheng, Z. D., Sebastian, J. M., Srinivasan, S., David, A. H., Richard, A. R., Chaikin, P. M.: Science290, p. 1558 (2000)10.1126/science.290.5496.1558Suche in Google Scholar PubMed

12Krausch, G., Kramer, E. J., Rafailovich, M. H., Sokolov, J.: Appl. Phys. Lett. 64, p. 2655 (1994)10.1063/1.111482Suche in Google Scholar

13Kimishima, I., Jinnai, H., Hashimoto, T.: Macromolecules32, p. 2585 (1994)10.1021/ma981892eSuche in Google Scholar

14Oshida, K., Nakazawa, T., Miyazaki, T., Endo, M.: Synthetic. Met. 125, p. 223 (2001)10.1016/S0379-6779(01)00535-5Suche in Google Scholar

15Ouyang, Q., Swinney, H. L.: Transition to Chemical Turbulence, Chaos1, p. 411 (1991)10.1063/1.165851Suche in Google Scholar PubMed

16Strawhecker, K. E., Kumar, S. K.: Macromolecules34, p. 4669 (2000)10.1021/ma001440dSuche in Google Scholar

17De Gennesa, P. G.: Eur. Phys. J. E7, p. 31 (2002)10.1007/s10189-002-8214-1Suche in Google Scholar

Received: 2005-7-9
Accepted: 2005-9-19
Published Online: 2013-04-06
Published in Print: 2006-05-01

© 2006, Hanser Publishers, Munich

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.0087/html
Button zum nach oben scrollen