Home PLLA Morphology Controlled by Dry-cast Process
Article
Licensed
Unlicensed Requires Authentication

PLLA Morphology Controlled by Dry-cast Process

  • B. Meng , F. Z. Cui , Q. Cai and Y. Zhang
Published/Copyright: April 6, 2013
Become an author with De Gruyter Brill

Abstract

The influence of solvent evaporation rate, in the dry-casting process, on crystallinity and morphology of crystallizable polymeric membrane was studied. Poly-l-lactic acid (PLLA) was taken as an example. The membranes were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). By controlling the solvent evaporation rate, samples with various crystallinities were prepared. From higher to lower crystallinity the membranes exhibit three types of surface morphology in sequence: granule, stripe and smooth.


Mail address: C. Fuzhai, Department of Materials Science & Engineering, Tsinghua University, Beijing 100084, P. R. China. E-mail:

References

1Kesting, R. E.: Synthetic Polymeric Membrane. Wiley, New York (1985)Search in Google Scholar

2Li, D. P., Wang, X. H., Meng, B., Cui, F. Z.: Mater. Sci. Forum. 423, p. 347 (2003)10.4028/www.scientific.net/MSF.423-425.347Search in Google Scholar

3Huda, M. S., Yasui, M., Mohri, N., Fujimura, T., Kimura, Y.: Mater. Sci. Eng. 333, p. 98 (2002)10.1016/S0921-5093(01)01834-2Search in Google Scholar

4Sasaki, T., Yamamoto, Y., Takahashi, T.: Polym. J. 32, p. 263 (2000)10.1295/polymj.32.263Search in Google Scholar

5Castellari, C., Ottani, S.: J. Membr. Sci. 9, p. 29 (1981)10.1016/S0376-7388(00)85115-7Search in Google Scholar

6Zeman, L., Fraser, T.: J. Membr. Sci. 87, p. 267 (1994)10.1016/0376-7388(94)87033-0Search in Google Scholar

7Huang, R. Y. M., Feng, X.: J. Appl. Polym. Sci. 57, p. 613 (1995)10.1002/app.1995.070570511Search in Google Scholar

8Young, T. H., Huang, J. H., Chuang, W. Y.: Eur. Polym. J. 38: 63 (2002)10.1016/S0014-3057(01)00183-5Search in Google Scholar

9Field, R. J., Burger, M. (Eds.): Oscillations and Traveling Waves in Chemical Systems. Wiley Interscience, New York (1985)Search in Google Scholar

10Nicolis, G., Prigogine, I.: Self-Organization in Non-Equilibrium Systems. New York, Wiley Interscience (1977)Search in Google Scholar

11Christopher, H., Douglas, H. A., Cheng, Z. D., Sebastian, J. M., Srinivasan, S., David, A. H., Richard, A. R., Chaikin, P. M.: Science290, p. 1558 (2000)10.1126/science.290.5496.1558Search in Google Scholar PubMed

12Krausch, G., Kramer, E. J., Rafailovich, M. H., Sokolov, J.: Appl. Phys. Lett. 64, p. 2655 (1994)10.1063/1.111482Search in Google Scholar

13Kimishima, I., Jinnai, H., Hashimoto, T.: Macromolecules32, p. 2585 (1994)10.1021/ma981892eSearch in Google Scholar

14Oshida, K., Nakazawa, T., Miyazaki, T., Endo, M.: Synthetic. Met. 125, p. 223 (2001)10.1016/S0379-6779(01)00535-5Search in Google Scholar

15Ouyang, Q., Swinney, H. L.: Transition to Chemical Turbulence, Chaos1, p. 411 (1991)10.1063/1.165851Search in Google Scholar PubMed

16Strawhecker, K. E., Kumar, S. K.: Macromolecules34, p. 4669 (2000)10.1021/ma001440dSearch in Google Scholar

17De Gennesa, P. G.: Eur. Phys. J. E7, p. 31 (2002)10.1007/s10189-002-8214-1Search in Google Scholar

Received: 2005-7-9
Accepted: 2005-9-19
Published Online: 2013-04-06
Published in Print: 2006-05-01

© 2006, Hanser Publishers, Munich

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.0087/html
Scroll to top button