Startseite Rheology and Processing of Molten Poly(methyl methacrylate) Resins
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Rheology and Processing of Molten Poly(methyl methacrylate) Resins

  • C. Stamboulides und S. G. Hatzikiriakos
Veröffentlicht/Copyright: 6. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The rheological and processing behavior in capillary extrusion of several poly(methyl methacrylate) (PMMA) resins was studied. The rheological characterization included: (i) frequency sweep experiments at various temperatures and application of the time-temperature superposition to obtain the master curves from which the activation energy of flow was found to be independent of molecular weight, (ii) extensional measurements using the Sentmanat Extensional Rheometer (SER) where it was found that poly(methyl methacrylate) resins exhibit strain hardening effects only at high strain rates. The capillary extrusion experiments were performed for three poly(methyl methacrylate) resins using additives in order to identify suitable processing aids for PMMA resins. First it was found that poly(methyl methacrylate) polymers exhibit spiral/helical type of distortions at a critical shear stress value of about 0.35 ± 0.03 MPa, independent of temperature and molecular weight. “Traditional” processing aids used mainly in the extrusion of polyolefins and some other commercial polymers were found ineffective in eliminating instabilities in the case of poly(methyl methacrylate) processing. On the other hand, mixing of poly(methyl methacrylate) with a proprietary blend of synthetic resins and fatty glycerides with modified organic fatty acids, MoldWiz INT-35UDH, was able to reduce the extrusion pressure and postpone the onset of gross melt fracture to higher shear rates. Finally and most importantly, the addition of different polyethylenes (LLDPE, LDPE and HDPE) resulted into a significant pressure reduction along with significant postponement of gross melt fracture to higher shear rates.


Mail address: S. G. Hatzikiriakos, Department of Chemical and Biological Engineering, The University of British Columbia, 2216 Main Mall, Vancouver, BC, V6T 1Z4, Canada. E-mail:

References

1Ramamurthy, A. V.: J. Rheol. 30, p. 337 (1986)10.1122/1.549852Suche in Google Scholar

2Larson, R. G.: Rheol. Acta31, p. 213/263 (1992)10.1007/BF00366504Suche in Google Scholar

3Achilleos, E. C., Georgiou, G., Hatzikiriakos, S. G.: J. Vinyl and Additive Technology8, p. 7/24 (2002)10.1002/vnl.10340Suche in Google Scholar

4 U.S. Patent 5688457 issued to E. I. DuPont de Nemours & Co Inc. (1997), Buckmaster, M. D., Henry, D. L., Randa, S. K.Suche in Google Scholar

5Rosenbaum, E. E., Randa, S. K., Hatzikiriakos, S. G., Stewart, C. W., Henry, D. L., Buckmaster, M.: Polym. Eng. Sci. 40 (1), p. 179 (2000)10.1002/pen.11151Suche in Google Scholar

6Hatzikiriakos, S. G., Rathod, N., Muliawan, E. B.: Polym. Eng. Sci., p.1098 (2005)10.1002/pen.20388Suche in Google Scholar

7Fujiyama, M., Kawasaki, Y.: J. Appl. Polym. Sci. 42, p. 467 (1991)10.1002/app.1991.070420219Suche in Google Scholar

8Kanu, R. C., Shaw, M. T.: Polym. Eng. Sci. 22 (8), p. 507 (1982)10.1002/pen.760220809Suche in Google Scholar

9Shih, C. K.: Science and Technology of Polymer Processing. MIT Press, Cambridge (1979)Suche in Google Scholar

10Dealy, J. M., Wissburn, K. F.: Melt Rheology and its Role in Plastics Processing – Theory and Applications. Van Nostrand Reinhold, New York (1990)10.1007/978-1-4615-9738-4Suche in Google Scholar

11Choi, G. Y., Kim, H. G., Kim, Y. H., Seo, C. W., Choi, J. H., Han, D. H., Oh, D. H., Min, K. E.: J. App. Polym. Sci. 86, p. 917/924 (2002)10.1002/app.11012Suche in Google Scholar

12Utracki, L. A.: Polymer Alloys and Blends: Thermodynamics and Rheology. Hanser Publishers, New York (1989)Suche in Google Scholar

13Rosenbaum, E. E., Hatzikiriakos, S. G., Stewart, C. W.: Intern. Polym. Process. 10, p. 204 (1995)10.3139/217.950204Suche in Google Scholar

14Hatzikiriakos, S. G., Migler, K. B., in: Polymer Processing Instabilities: Understanding and Control, Hatzikiriakos, S. G., Migler, K. B. (Eds.), Marcel Dekker, New York (2004)10.1201/9781420030686Suche in Google Scholar

15Kharchenko, S. B., Migler, K. B., Hatzikiriakos, S. G., in: Polymer Processing Instabilities: Understanding and Control, Hatzikiriakos, S. G., Migler, K. B. (Eds.), Marcel Dekker, New York (2004)Suche in Google Scholar

16Sentmanat, M., Hatzikiriakos, S. G.: Rheol. Acta. 43, p. 624 (2004)10.1007/s00397-004-0359-6Suche in Google Scholar

17Sentmanat, M., Muliawan, E. B., Hatzikiriakos, S. G.: Rheol. Acta44, p. 1 (2005)10.1007/s00397-004-0398-zSuche in Google Scholar

18Baumgaertel, M., Winter, H. H.: Rheol. Acta28, p. 511 (1989)10.1007/BF01332922Suche in Google Scholar

19Baumgaertel, M., Winter, H. H.: J. Non-Newtonian Fluid Mech. 44, p. 15 (1992)10.1016/0377-0257(92)80043-WSuche in Google Scholar

20Baumgaertel, M., Schausberger, A., Winter, H. H.: Rheol Acta29, p. 400 (1990)10.1007/BF01376790Suche in Google Scholar

21Stamboulides, C.: MASc Thesis, University of British Columbia, Vancouver (2005)Suche in Google Scholar

22Kissi, N. El., Piau, J. M., Toussaint, F.: J. Non-Newtonian Fluid Mech. 68, p. 271 (1997)10.1016/S0377-0257(96)01507-8Suche in Google Scholar

23Dealy, J. M., Kim, S., in: Polymer Processing Instabilities: Understanding and Control, Hatzikiriakos, S. G., Migler, K. B. (Eds.), Marcel Dekker, New York (2004)Suche in Google Scholar

Received: 2005-6-22
Accepted: 2005-8-25
Published Online: 2013-04-06
Published in Print: 2006-05-01

© 2006, Hanser Publishers, Munich

Heruntergeladen am 6.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/217.0081/pdf
Button zum nach oben scrollen