Home The influence of Mo/B atomic ratio on microstructural evolution and mechanical properties of Mo2FeB2-based cermets
Article
Licensed
Unlicensed Requires Authentication

The influence of Mo/B atomic ratio on microstructural evolution and mechanical properties of Mo2FeB2-based cermets

  • Jiajie Zhang , Yong Zheng , Wei Zhou , Guotao Zhang , Zheng Ke , Zuowei Dong and Xuepeng Lv
Published/Copyright: July 8, 2019
Become an author with De Gruyter Brill

Abstract

Mo2FeB2-based cermets were prepared with various Mo/B atomic ratios in the range of 0.8 to 1.1. The microstructure and crystalline phases were studied through scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffractometry. The results indicated that as the Mo/B atomic ratio increased, the morphology of the hard phase gradually transformed from long-strip to near-equiaxed. The tendency of transformation in the range of 1.0 to 1.1 was more significant. Two typical cermet samples (Mo/B = 1.0, Mo/B = 1.08) of different morphologies were studied with transmission electron microscopy. As the Mo/B atomic ratio increased, the average particle size decreased, inhibiting the nucleation of the particles, the anisotropy of different crystallographic planes reduced, the particles transformed from long-strip to the near-equiaxed shape. Moreover, it could be found from X-ray diffractometry results that the disparity between the crystal lattice constants c and a gradually diminished and the surface tension differences of the amorphous surfaces decreased, resulting in the anisotropy of different crystal-lographic planes gradually decreasing. The cermets with Mo/B = 1.02 demonstrated the highest transverse rupture strength, as well as the hardness and improved fracture toughness values of 2367.5 ± 50 MPa, 88.2 ± 0.1 HRA, and 27.6 ± 0.5 MPa · m1/2, respectively.


Correspondence address, Prof. Yong Zheng, College of Material Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China, Tel.: +86-25-52112626, Fax: +86-25-52112626, E-mail:

References

[1] Y.Yamasaki, M.Nishi, K.Takagi: J. Solid State Chem.177 (2004) 551. 10.1016/j.jssc.2003.03.008Search in Google Scholar

[2] J.Komai, X.T.Pieczonka: J. Mater. Process Technol.157–158 (2004) 749. 10.1016/j.jmatprotec.2004.07.134Search in Google Scholar

[3] F.H.Yang, Y.Z.Wu, J.S.Han: J. Alloys Compd.665 (2016) 373. 10.1016/j.jallcom.2016.01.053Search in Google Scholar

[4] F.H.Yang, B.Su, A.J.Zhang: J. Tribol. Int.120 (2018) 391. 10.1016/j.triboint.2017.12.038Search in Google Scholar

[5] S.L.Wang, Y.Pan, Y.H.Lin, C.C.Tong: J. Comp. Mater. Sci.146 (2018) 18. 10.1016/j.commatsci.2018.01.027Search in Google Scholar

[6] J.J.Zhang, Y.Zheng, W.Zhou, G.T.Zhang, K.Zheng, Z.W.Dong, P.Feng: J. Vacuum.155 (2018) 509. 10.1016/j.vacuum.2018.06.058Search in Google Scholar

[7] K.Takagi, Y.Yamasaki, M.Komai: J. Solid State Chem.133 (1997) 243. 10.1006/jssc.1997.7449Search in Google Scholar

[8] K.Takagi: J. Solid State Chem.179 (2006) 2809. 10.1016/j.jssc.2006.01.023Search in Google Scholar

[9] H.Z.Yu, W.J.Liu, Y.Zheng: Int. J. Refract. Met. Hard Mater.29 (2011) 724. 10.1016/j.ijrmhm.2011.06.001Search in Google Scholar

[10] K.Takagi: J. Mater. Chem. Phys.67 (2001) 214. 10.1016/S0254-0584(00)00442-9Search in Google Scholar

[11] H.Z.Yu, W.J.Liu, Y.Zheng: J. Mater. Des.32 (2011) 3521. 10.1016/j.matdes.2011.02.034Search in Google Scholar

[12] K.Takagi: J. Solid State Chem.179 (2006) 2809. 10.1016/j.jssc.2006.01.023Search in Google Scholar

[13] H.Z.Yu, W.J.Liu, P.Feng, Y.Zheng: Int. J. Refract. Met. Hard Mater.45 (2014) 48. 10.1016/j.ijrmhm.2014.03.010Search in Google Scholar

[14] J.JZhang, Y.Zheng, J.X.Chen, W.Zhou, Y.J.Zhao, P.Feng: Int. J. Refract Met. Hard Mater.72 (2018) 56. 10.1016/j.ijrmhm.2017.11.041Search in Google Scholar

[15] T.Ide, T.Ando: J. Metall. Mater. Trans.A 20 (1989) 17. 10.1007/BF02647490Search in Google Scholar

[16] K.Takagi, M.Komai, T.Ide, T.Watanabe, Y.Kondo: J. Jpn. Soc. Powder Powder Metall.35 (1988) 769. 10.2497/jjspm.35.769Search in Google Scholar

[17] H.Z.Yu, Y.Zheng, W.J.Liu: Int. J. Refract. Met. Hard Mater.28 (2010) 338. 10.1016/j.ijrmhm.2009.11.008Search in Google Scholar

[18] X.H.Ren, L.M.Yu, Y.C.Liu: Int. J. Refract. Met. Hard Mater.61 (2016) 207. 10.1016/j.ijrmhm.2016.09.015Search in Google Scholar

[19] D.K.Shetty, I.G.Wright, P.N.Mince: J. Mater. Sci.20 (1985) 1873. 10.1007/BF00555296Search in Google Scholar

[20] R.Warren: J. Mater. Sci.3 (1968) 471. 10.1007/BF00549730Search in Google Scholar

[21] R.Warren: J. Am. Ceram. Soc.7 (1972) 1434. 10.1007/BF00574935Search in Google Scholar

[22] Y.I.Jung, S.J.L.Kang, D.Y.Yoon: J. Mater. Res. Soc.24 (2009) 2949. 10.1557/jmr.2009.0356PSearch in Google Scholar

[23] Y.J.Park, N.M.Hwang, D.Y.Yoon: J. Metall. Mater. Trans.A 27 (1996) 2809. 10.1007/BF02652373Search in Google Scholar

[24] H.R.Lee, D.J.Kim, N.M.Hwang, D.Y.Kim: J. Am. Ceram. Soc.86 (2003) 152. 10.1111/j.1151-2916.2003.tb03293.xSearch in Google Scholar

[25] K.Choi, N.M.Hwang, D.Y.Kim: J. Powder Metall.43 (2000) 168. 10.1179/003258900665943Search in Google Scholar

[26] K.Choi, N.M.Hwang, D.Y.Kim: J. Am. Ceram. Soc.85 (2002) 2313. 10.1111/j.1151-2916.2002.tb00453.xSearch in Google Scholar

[27] W.Jo, D.Y.Kim, N.M.Hwang: J. Am. Ceram. Soc.89 (2006) 2369. 10.1111/j.1551-2916.2006.01160.xSearch in Google Scholar

[28] W.D.Schubert, H.Neumeister, G.Kinger, B.Lux: Int. J. Refract Met. Hard Mater.16 (1998) 133. 10.1016/S0263-4368(98)00028-6Search in Google Scholar

Received: 2018-11-20
Accepted: 2019-01-24
Published Online: 2019-07-08
Published in Print: 2019-07-15

© 2019, Carl Hanser Verlag, München

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111778/html?lang=en&srsltid=AfmBOor7EURaEcH27GHTUCo4BCv80fJuAAUUFAfIy2jMSvUanC5biwht
Scroll to top button