Fabrication of Al–WC gradient nano-composite via centrifugal casting method
-
Magid Arefkhani
Abstract
In this work, fabrication and characterization of aluminum gradient composites reinforced by nano-particles of tungsten carbide via the centrifugal casting method were studied. In order to prepare a mixture of aluminum and tungsten carbide powders, a high energy planetary ball mill was used. The master-alloy was added to A356 aluminum matrix by horizontal centrifugal casting at different rotation speeds to synthesize Al-5 wt.% WC. The results of X-ray diffraction and scanning electron microscopy analysis confirmed a homogeneous powder in nanometer scale through mechanical milling. Centrifugal casting at speeds of up to 1300 RPM is a suitable method for production of Al–WC gradient nano-composites. By increasing the rotation speed, reinforcement phases are transmitted into the outer layers of cast samples. An agglomeration of hard WC phase leads to improvement of surface hardness and wear resistance.
References
[1] S.Bathula, R.Anandani, A.Dhar, A.Srivastava: Mater. Sci. Eng.A 545 (2012) 97. 10.1016/j.msea.2012.02.095Search in Google Scholar
[2] K.Ma, E.J.Lavernia, J.M.Schoenung: Rev. Adv. Mater. Sci48 (2017) 91.Search in Google Scholar
[3] J.Torralba, C.Da Costa, F.Velasco: J. Mater. Process. Tech.133 (2003) 203. 10.1016/s0924-0136(02)00234-0Search in Google Scholar
[4] J.Liu, B.Fernandez, P.Rodriguez, S.Naher, D.Brabazon: Adv. Mate. Process. Tech.2 (2016) 437. 10.1080/2374068x.2016.1244389Search in Google Scholar
[5] K.K.Chawla: Composite materials: science and engineering, Springer Science & Business Media, (2012). 10.1007/978-0-387-74365-3Search in Google Scholar
[6] H.Lin, B.Tao, J.Xiong, Q.Li, Y.Li: Ceram. Int.39 (2013) 2877. 10.1016/j.ceramint.2012.09.061Search in Google Scholar
[7] Y.Jin, X.Li, D.Liu, C.Liu, R.Yang: Powder Tech.217 (2012) 482. 10.1016/j.powtec.2011.11.005Search in Google Scholar
[8] T.Muthuramalingam, B.Mohan, A.Jothilingam: Mater. Manuf. Process.29 (2014) 1374. 10.1080/10426914.2014.930956Search in Google Scholar
[9] A.Domashenkov, A.Borbély, I.Smurov: Mater. Manuf. Process.32 (2017) 93. 10.1080/10426914.2016.1176195. 10.1080/10426914.2016.1176195Search in Google Scholar
[10] S.C.Tjong: Adv. Eng. Mater.9 (2007) 639. 10.1002/adem.200700106Search in Google Scholar
[11] R.Casati, M.Vedani: Met.4 (2014) 65. 10.3390/met4010065Search in Google Scholar
[12] X.Q.You, C.J.Zhang, N.Liu, M.P.Huang, J.G.Ma: J. Mater. Sci.43 (2008) 2929. 10.1007/s10853-007-1798-0Search in Google Scholar
[13] F.Kachold, R.Singer: J. Mater. Eng. Perform.25 (2016) 3128. 10.1007/s11665-016-1974-ySearch in Google Scholar
[14] T.Rajan, R.Pillai, B.Pai: Mater. Charact.61 (2010) 923. 10.1016/j.matchar.2010.06.002Search in Google Scholar
[15] N.B.Duque, Z.H.Melgarejo, O.M.Suárez: Mater. Charact.55 (2005) 167. 10.1016/j.matchar.2005.04.005Search in Google Scholar
[16] J.J.Sobczak, L.Drenchev, J. Mater. Sci. Technol. 29 (2013) 297. 10.1016/j.jmst.2013.02.006Search in Google Scholar
[17] Ö.Savaş, R.Kayıkcı, F.Fiçici, M.Çolak, G.Deniz, F.Varol: Sci. Eng. of Compos. Mat.23 (2016) 155. 10.1515/secm-2014-0141Search in Google Scholar
[18] T.Rajan, B.Pai: T. Indian I. Metals62 (2009) 383. 10.1007/s12666-009-0067-0Search in Google Scholar
[19] A.Lekatou, A.Karantzalis, A.Evangelou, V.Gousia, G.Kaptay, Z.Gácsi, P.Baumli, A.Simon: Mat. Des.65 (2015) 1121. 10.1016/j.matdes.2014.08.040Search in Google Scholar
[20] M.M.Rahvard, M.Tamizifar, S.M.A.Boutorabi, S.G.Shiri: Mat. Des.56 (2014) 105. 10.1016/j.matdes.2013.10.070Search in Google Scholar
[21] Y.Watanabe, Y.Inaguma, H.Sato, E.Miura-Fujiwara: Mat.2 (2009) 2510. 10.3390/ma2042510Search in Google Scholar
[22] A.Velhinho, P.Sequeira, F.B.Fernandes, J.D.Botas, L.Rocha: Mater. Sci. Forum, Aedermannsdorf, Switzerland (2003) 257. 10.4028/www.scientific.net/msf.423-425.257Search in Google Scholar
[23] E.J.Mittemeijer, U.Welzel: Zeitschrift für Kristallographie Int. J. Struct. Ph. Chem. Aspec. Crystal. Mate.223 (2008) 552. 10.1524/zkri.2008.1213Search in Google Scholar
[24] ASTM, E384, Standard Test Method for Knoop and Vickers Hardness of Materials, ASTM International, West Conshohocken, PA, USA, 2011. 10.1520/e0384-10e01Search in Google Scholar
[25] ASTM, G99, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA, USA, 2008. 10.1520/g0099Search in Google Scholar
[26] M.S.El-Eskandarany: Mechanical alloying: For fabrication of advanced engineering materials, William Andrew (2001).Search in Google Scholar
[27] J.Intrater: Mechanical alloying and milling, Taylor & Francis (2007). 10.1080/10426910701416344Search in Google Scholar
[28] M.Razavi, R.Ghaderi, M.R.Rahimipour, M.O.Shabani: Mater. Manuf. Process.28 (2012) 31. 10.1080/10426914.2012.677916Search in Google Scholar
[29] G.E.Totten, D.S.MacKenzie, Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes, CRC Press (2003). 10.1201/9780203912591Search in Google Scholar
[30] M.Razavi, M.R.Rahimipour, R.Yazdani-Rad: J. Alloys Compd.509 (2011) 6683. 10.1016/j.jallcom.2011.03.137Search in Google Scholar
[31] W.D.Callister, D.G.Rethwisch: Materials science and engineering, John Wiley & Sons NY (2011).Search in Google Scholar
[32] W.A.Glaeser, R.C.Erickson, K.F.Dufrane, J.W.K.B.Columbus: Lubr. Eng.48 (1992) 867.Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- 3D morphology characterization of graphite and its effect on the thermal conductivity of vermicular graphite iron
- Experimental liquidus studies of the Zn–Fe–Si–O system in air
- Phase transitions in copper–silver alloys under high pressure torsion
- High-temperature oxidation behavior of low sulfur martensitic stainless steel 1Cr13Mo containing cerium
- Microstructure and properties of Cu-bearing carbidic austempered ductile iron
- Fabrication of Al–WC gradient nano-composite via centrifugal casting method
- Properties of vacuum-laser-welded Ti-based bulk metallic glass and Zr-based bulk metallic glass composite
- Optimal design and characterization of novel biomedical Zr-based alloys for hard tissue substitution
- The influence of Mo/B atomic ratio on microstructural evolution and mechanical properties of Mo2FeB2-based cermets
- Piezo-spectroscopic and tribological characterization of diffusion bonded oxide laminate composite ceramics
- Short Communications
- ZnO-modified SnO flower-like microstructures with enhanced photocatalytic performance
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- 3D morphology characterization of graphite and its effect on the thermal conductivity of vermicular graphite iron
- Experimental liquidus studies of the Zn–Fe–Si–O system in air
- Phase transitions in copper–silver alloys under high pressure torsion
- High-temperature oxidation behavior of low sulfur martensitic stainless steel 1Cr13Mo containing cerium
- Microstructure and properties of Cu-bearing carbidic austempered ductile iron
- Fabrication of Al–WC gradient nano-composite via centrifugal casting method
- Properties of vacuum-laser-welded Ti-based bulk metallic glass and Zr-based bulk metallic glass composite
- Optimal design and characterization of novel biomedical Zr-based alloys for hard tissue substitution
- The influence of Mo/B atomic ratio on microstructural evolution and mechanical properties of Mo2FeB2-based cermets
- Piezo-spectroscopic and tribological characterization of diffusion bonded oxide laminate composite ceramics
- Short Communications
- ZnO-modified SnO flower-like microstructures with enhanced photocatalytic performance
- DGM News
- DGM News