Home ZnO-modified SnO flower-like microstructures with enhanced photocatalytic performance
Article
Licensed
Unlicensed Requires Authentication

ZnO-modified SnO flower-like microstructures with enhanced photocatalytic performance

  • Baoyan Liang , Changhong Sun , Danhui Han , Yanli Zhang , Wangxi Zhang , Ruijie Zhang and Ying Liu
Published/Copyright: July 8, 2019
Become an author with De Gruyter Brill

Abstract

A flower-like SnO/ZnO heterojunction photocatalyst with high catalytic activity was synthesized by a simple ultrasonic reaction method. Results show that the SnO/ZnO composites consist of SnO, SnO2, and ZnO. The flower-like structure is made of many SnO nanosheets with a thickness of approximately 20 nm and length of 1–2 μm. A tight interface combination of SnO, SnO2, and ZnO clearly improves the photoactivity of SnO. The photocatalytic performance of the SnO/ZnO composite is much higher than that of ZnO raw materials and SnO sample. The degradation rate of the methyl orange of the SnO/ZnO composite is 99% within 60 min under visible-light irradiation.

Keywords: SnO; ZnO; Photocatalysis

Correspondence address, Dr. Wangxi Zhang, Materials & Chemical Engineering school, Zhongyuan University of Technology, Zhengzhou, 450007, P.R. China, Tel: +86 371 69975740, Fax: +86 371 69975740, E-mail:

References

[1] J.Yao, Y.J.Yin, C.X.Wang: Int. J. Mater. Res.101 (2010) 13111315. 10.3139/146.110411Search in Google Scholar

[2] N.R.Khalid, A.Majid, M.B.Tahir, N.A.Niaz, S.Khalid: Ceram. Int.43 (2017) 1455214571. 10.1016/j.ceramint.2017.08.143Search in Google Scholar

[3] B.J.Farner, A.Turolla, A.F.Piasecki, J.Y.Bottero, M.Antonelli, M.R.Wiesner: Langmuir.33 (2017) 27702779. 10.1021/acs.langmuir.6b04116Search in Google Scholar PubMed PubMed Central

[4] Y.K.Cui, F.P.Wang, M.Z.Iqbal, Z.Y.Wang, YanLi, J.H.Tu: Mater. Res. Bull.70 (2015) 784788. 10.1016/j.materresbull.2015.06.021Search in Google Scholar

[5] K.Santhi, C.Rani, S.Karuppuchamy: J. Alloys Compd.662 (2016) 102107. 10.1016/j.jallcom.2015.12.007Search in Google Scholar

[6] B.Y.Liang, D.H.Han, C.H.Sun, W.X.Zhang, Q.Qin: Ceram. Int.44 (2018) 73157318. 10.1016/j.ceramint.2018.01.093Search in Google Scholar

[7] K.M.Lee, C.W.Lai, K.S.Ngai, J.C.Juan: Water. Res.88 (2016) 428448. 10.1016/j.watres.2015.09.045Search in Google Scholar PubMed

[8] K.Z.Qi, B.Cheng, J.G.Yu, W.K.Ho: J. Alloys Compd.727 (2017) 792820. 10.1016/j.jallcom.2017.08.142Search in Google Scholar

[9] Q.Z.Luo, X.L.Yang, X.X.Zhao, D.S.Wang, R.Yin, X.Y.Li, J.An: Appl. Catal. B-Environ.204 (2017) 30431510.1016/j.apcatb.2016.11.037Search in Google Scholar

[10] M.Dorraj, M.Alizadeh, N.A.Sairi, W.J.Basirun, B.T.Goh, P.M.Woi, Y.Alias: Appl. Surf. Sci.414 (2017) 251261. 10.1016/j.apsusc.2017.04.045Search in Google Scholar

[11] C.Lan, J.Gong, Y.Jiang: J. Alloys Compd.575 (2013) 2428. 10.1016/j.jallcom.2013.04.093Search in Google Scholar

[12] K.C.Sanal, M.K.Jayaraj: Mater. Sci. Eng.B 178 (2013) 816821. 10.1016/j.mseb.2013.04.007Search in Google Scholar

Received: 2018-04-27
Accepted: 2019-01-31
Published Online: 2019-07-08
Published in Print: 2019-07-15

© 2019, Carl Hanser Verlag, München

Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111781/html
Scroll to top button