A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
-
Rameshwari Naorem
, Anshul Gupta , Sukriti Mantri , Gurjyot Sethi , K. V. ManiKrishna , Raj Pala , Kantesh Balani and Anandh Subramaniam
Abstract
The decrease in the X-ray diffraction Bragg peak intensity from concentrated multicomponent alloys (CMA), has been modeled in literature akin to the effect of temperature. In the current work, experiments and computations are used to comprehend the effect of atomic disorder in CMA on the Bragg peaks of powder diffraction patterns. Ni–Co–Fe–Cr–Mn and Cu–Ni–Co–Fe–V have been used as model systems for the study. It is proved that the intensity decrease is not insignificant, but is not anomalous either. A recipe is evolved to compare the Bragg peak intensities across the alloys of a CMA. It is demonstrated that it is incorrect to model the effect of an increase in atomic disorder in a CMA, as a temperature effect. A ‘good measure’ of lattice distortion is identified and further it is established that full width half maximum is a good measure of the bond length distortion. It is demonstrated that the true strain due to bond length distortion is of significantly lower magnitude than that given by a priori measures of lattice strain. In the scheme of categorization of defects in crystals, it is argued that CMA is a separate class (as distinct from type-I and type-II defects); which should be construed as a defected solid, rather than a defect in a solid.
References
[1] A.Guinier: X-Ray diffraction in crystals, imperfect crystals, and amorphous bodies. Translated into English by: LorrainP, Sainte-MarieLD. San Francisco, CA: W. H. Freeman and Co. (1963). ISBN: 0716703076 9780716703075.Search in Google Scholar
[2] M.A.Krivoglaz: Theory of X-Ray and thermal-Neutron scattering by real crystals. New York, NY: Plenum Press (1969). ISBN: 978–1–4899–5584–5.Search in Google Scholar
[3] B.E.Warren: X-Ray diffraction. New York, NY: Addison-Wesley Pub. Co. (1969). ISBN: 978–0–486–66317–3.Search in Google Scholar
[4] B.S.Murty, J.W.Yeh, S.Ranganathan: High-Entropy Alloys. London, UK: Elsevier Inc. (2014). ISBN: 9780128002513.10.1016/B978-0-12-800251-3.00002-XSearch in Google Scholar
[5] M.C.Gao, J.W.Yeh, P.K.Liaw, Y.Zhang, eds.: High-entropy alloys: fundamentals and applications. Switzlerland: Springer (2016). ISBN: 978–3–319–27013–5. 10.1007/978-3-319-27013-5Search in Google Scholar
[6] D.Miracle, O.Senkov: Acta Mater.122 (2017) 448–551. 10.1016/j.actamat.2016.08.081Search in Google Scholar
[7] J.W.Yeh, Y.L.Chen, S.J.Lin, S.K.Chen: Mater. Sci. Forum.560 (2007) 1–9. 10.4028/www.scientific.net/MSF.560.1Search in Google Scholar
[8] Y.Zhang, T.T.Zuo, Z.Tang, M.C.Gao, K.A.Dahmen, P.K.Liaw, Z.P.Lu: Prog. Mater Sci.61 (2014) 1–93. 10.1016/j.pmatsci.2013.10.001Search in Google Scholar
[9] A.K.Singh, A.Subramaniam: J. Alloys Compd.587 (2014) 113–119. 10.1016/j.jallcom.2013.10.133Search in Google Scholar
[10] L.I.Anmin, X.Zhang: Acta Metall. Sin. Engl.22 (2009) 219–224. 10.1016/S1006-7191(08)60092-7Search in Google Scholar
[11] A.K.Singh, N.Kumar, A.Dwivedi, A.Subramaniam: Intermetallics.53 (2014) 112–119. 10.1016/j.intermet.2014.04.019Search in Google Scholar
[12] L.R.Owen, E.J.Pickering, H.Y.Playford, H.J.Stone, M.G.Tucker, N.G.Jones: Acta Mater.122 (2017) 11–18. 10.1016/j.actamat.2016.09.032Search in Google Scholar
[13] J.W.Yeh, S.Y.Chang, Y.D.Hong, S.K.Chen, S.J.Lin: Mater. Chem. Phys.103 (2007) 41–46. 10.1016/j.matchemphys.2007.01.003Search in Google Scholar
[14] E.J.Mittemeijer, U.Welzel: Modern Diffraction Methods, Wiley-VCH, Weinheim (2013). ISBN: 978 3 527 32279 4. 10.1002/9783527649884.ch4Search in Google Scholar
[15] B.Feng, M.Widom: Mater. Chem. Phys.210 (2018) 309–314. 10.1016/j.matchemphys.2017.06.038Search in Google Scholar
[16] I.Toda-Caraballo, P.E.Rivera-Diaz-del-Castillo: Intermetallics.71 (2016) 76–87. 10.1016/j.intermet.2015.12.011Search in Google Scholar
[17] Y.Waseda: Anomalous X-Ray scattering for materials characterization: atomic-Scale structure determination. Berlin: Springer (2002). ISBN: 978–3–540–46008–4.10.1007/3-540-46008-XSearch in Google Scholar
[18] K.Huang: Proc. R. Soc. A190 (1947) 102–117. 20255303; 10.1098/rspa.1947.0064Search in Google Scholar PubMed
[19] W.W.Webb: J. Appl. Phys.33 (1962) 3546–3552. 10.1063/1.1702444Search in Google Scholar
[20] F.H.Herbstein, B.S.Borie, B.L.Averbach: Acta Crystallogr.9 (1956) 466–471. 10.1107/S0365110X56001261Search in Google Scholar
[21] R.A.Coyle, B.Gale: Acta Crystallogr.8 (1955) 105–111. 10.1107/S0365110X55000406Search in Google Scholar
[22] R.W.James: The optical principles of the diffraction of X-Rays. London, Bell (1962). ISBN: 0918024234 9780918024237.Search in Google Scholar
[23] S.Dietrich, W.Fenzl: Phys. Rev. B.39 (1989) 8873. 10.1103/PhysRevB.39.8873Search in Google Scholar PubMed
[24] T.R.Welberry, B.D.Butler: Chem. Rev. 957 (1995) 2369–2403. 10.1021/cr00039a005Search in Google Scholar
[25] W.Schweika: Disordered alloys: diffuse scattering and Monte Carlo simulations. Berlin: Springer (1998). 10.1007/BFb0110656Search in Google Scholar
[26] B.D.Cullity, S.R.Stock: Elements of X-Ray diffraction. Harlow: Pearson education limited (2014). ISBN: 978–1–292–04054–7.Search in Google Scholar
[27] M.Calamiotou, D.Lampakis, N.D.Zhigadlo, S.Katrych, J.Karpinski, A.Fitch, P.Tsiaklagkanos, E.Liarokapis: Physica C: Superconductivity and its Applications.527 (2016) 55–62. 10.1016/j.physc.2016.05.019Search in Google Scholar
[28] J.W.Yeh: JOM67 (2015) 2254–2261. 10.1007/s11837-015-1583-5Search in Google Scholar
[29] T.Egami, S.J.Billinge: Underneath the Bragg Peaks, Structural Analysis of Complex Materials. Oxford, UK: Pergamon Materials Series, Elsevier Ltd. (2003). ISBN: 9780080971339. 10.1016/S1470-1804(03)80002-0Search in Google Scholar
[30] S.Guo, C.Ng, Z.Wang, C.T.Liu: J Alloys Compd.583 (2014) 410–413. 10.1016/j.jallcom.2013.08.213Search in Google Scholar
[31] H.S.Oh, D.Ma, G.P.Leyson, B.Grabowski, E.S.Park, F.Körmann, D.Raabe: Entropy.18 (2016) 321. 10.3390/e18090321Search in Google Scholar
[32] N.L.Okamoto, K.Yuge, K.Tanaka, H.Inui, E.P.George: AIP Advances.6 (2016) 125008. 10.1063/1.4971371Search in Google Scholar
[33] H.Song, F.Tian, Q.M.Hu, L.Vitos, Y.Wang, J.Shen, N.Chen: Phys. Rev. Mater.1 (2017) 023404. 10.1103/PhysRevMaterials.1.023404Search in Google Scholar
[34] T.R.Welberry, T.Weber: Crystallogr. Rev.22 (2016) 2–78. 10.1080/0889311X.2015.1046853Search in Google Scholar
[35] J.G.Kirkwood: J. Chem. Phys.2 (1938) 70–75. 10.1063/1.1750205Search in Google Scholar
[36] B.E.Warren, B.L.Averbach, B.W.Roberts: J. Appl. Phys.22 (1951) 1493–1496. 10.1063/1.1699898Search in Google Scholar
[37] B.Borie: Acta Crystallogr.10 (1957) 89–96. 10.1107/S0365110X57000274Search in Google Scholar
[38] B.Borie: Acta Crystallogr.12 (1959) 280–282. 10.1107/S0365110X5900086XSearch in Google Scholar
[39] A.Guinier: Bulletin de la Société française de minéralogie.77 (1954) 680–710. DOI:.Search in Google Scholar
[40] B.Cantor, I.T.Chang, P.Knight, A.J.Vincent: Mater Sci Eng A.375 (2004) 213–218. 10.1016/j.msea.2003.10.257Search in Google Scholar
[41] Y.Zhang, Y.J.Zhou, J.P.Lin, G.L.Chen, P.K.Liaw: Adv Eng Mater.10 (2008) 534–538. 10.1002/adem.200700240Search in Google Scholar
[42] Y.F.Ye, C.T.Liu, Y.Yang: Acta Mater.94 (2015) 152–161. 10.1016/j.actamat.2015.04.051Search in Google Scholar
[43] E.A.Brandes, G.B.Brook, C.J.Smithells: Smithells metals reference book.: Butterworth-Heinemann, Oxford (1992). ISBN: 0 7506 7509 8/81–81474–48–1.Search in Google Scholar
[44] V.M.Goldschmidt: Z. Phys. Chem.133 (1928) 397–419. DOI:.10.1515/zpch-1928-13327Search in Google Scholar
[45] www.webelements.com.Search in Google Scholar
[46] J.C.Slater: J. Chem. Phys.41 (1964) 3199–3204. 10.1063/1.1725697Search in Google Scholar
[47] D.D.Pollock: Physical properties of materials for engineers. Florida, FL: CRC Press (1993). ISBN: 9780849342370 – CAT# 4237.Search in Google Scholar
[48] S.Enzo, G.Fagherazzi, A.Benedetti, S.Polizzi: J. Appl. Crystallogr.21 (1988) 536–542. 10.1107/S0021889888006612Search in Google Scholar
[49] T.H.De Keijser, J.I.Langford, E.J.Mittemeijer, A.B.Vogels: J. Appl. Crystallogr.15 (1982) 308–314. 10.1107/S0021889882012035Search in Google Scholar
[50] A.J.Wilson: Nature193 (1962) 568–569. 10.1038/193568a0Search in Google Scholar
[51] N.C.Halder, C.N.Wagner: Adv. X-Ray Anal. (1966) 91–102. 10.1007/978-1-4684-7633-0_8Search in Google Scholar
[52] Y.Zhao, J.Zhang: J. Appl. Crystallogr.41 (2008) 1095–1108. 10.1107/S0021889808031762Search in Google Scholar
[53] http://www.crystalimpact.com/match/.Search in Google Scholar
[54] W.A.Rachinger: J. Sci. Instrum.25 (1948) 254. 10.1088/0950-7671/25/7/125Search in Google Scholar
[55] A.R.Stokes: Proc. Phys. Soc.61 (1948) 382. 10.1088/0959-5309/61/4/311Search in Google Scholar
[56] I.K.Robinson: Phys. Rev. B.33 (1986) 3830. 10.1103/PhysRevB.33.3830Search in Google Scholar
[57] P.Debye: Annalen der Physik.351 (1915) 809–23. 10.1002/andp.19153510606Search in Google Scholar
[58] MATLAB 2016, https://in.mathworks.com/products/matlab.html.Search in Google Scholar
[59] R.W.Cheary, A.Coelho: J. Appl. Crystallogr.25 (1992) 109–121. 10.1107/S0021889891010804Search in Google Scholar
[60] S.J.Plimpton: Comput. Phys.117 (1995) 1–9. 10.1006/jcph.1995.1039Search in Google Scholar
[61] C.A.Becker, F.Tavazza, Z.T.Trautt, R.A.de Macedo: Curr. Opin. Solid State Mater. Sci.17 (2013) 277–83. 10.1016/j.cossms.2013.10.001Search in Google Scholar
[62] S.M.Foiles, M.I.Baskes, M.S.Daw: Phys. Rev B.33 (1986) 7983. 10.1103/PhysRevB.33.7983Search in Google Scholar
[63] C.Suryanarayana, M.G.Norton: X-Ray Diffraction A Practical Approach. New York, NY: Plenum Press (1998). 10.1007/978-1-4899-0148-4Search in Google Scholar
[64] J.Gubicza, ed.: X-ray line profile analysis in materials science. Hershey, PA: IGI Global (2014). 24481239; 10.4018/978-1-4666-5852-3Search in Google Scholar
[65] G.U.Sheng, C.T.Liu: Prog. Nat. Sci.: Mater. Int.21 (2011) 433–446. 10.1016/S1002-0071(12)60080-XSearch in Google Scholar
[66] W.B.Pearson: The crystal chemistry and physics of metals and alloys, New York, NY: John Wiley & Sons, Inc (1972). DOI:. 10.1016/0003-4916(72)90240-0Search in Google Scholar
© 2019, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
- A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
- Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
- Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
- Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
- Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
- Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
- Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
- Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
- Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
- Short Communications
- Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
- Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
- A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
- Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
- Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
- Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
- Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
- Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
- Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
- Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
- Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
- Short Communications
- Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
- Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
- DGM News
- DGM News