Microstructural evolution and high-temperature compressive properties of an extruded Mg–Dy–Zn alloy sheet
-
Guangli Bi
Abstract
Microstructural evolution and compressive properties of an extruded Mg-2Dy-0.5Zn (at.%) alloy sheet at 350°C were investigated. As the compressive strain increased, the volume fraction of dynamic recrystallization increased, the fine lamellar 14H long period stacking ordered phase precipitated in the dynamic recrystallization grain, and the Mg12ZnDy phase with an 18R long period stacking ordered structure gradually bent. These secondary phases not only acted as nucleation sites to promote dynamic recrystallization but also restrained grain growth by inhibiting dislocation movement and grain boundary sliding. The compressive yield strength, ultimate compressive strength, and compressive strain of the alloy sheet were 161 MPa, 212 MPa, and 12.4% at 350°C, respectively. The high compressive strengths were mainly attributed to grain refinement, kink band strengthening of the 18R long period stacking ordered phase and precipitation strengthening of the fine lamellar 14H long period stacking ordered phase in the dynamic recrystallization grain.
References
[1] T.J.Chen, D.H.Zhang, W.Wang, Y.Ma, Y.Hao: Mater. Sci. Eng. A607 (2014) 17–27. 10.1016/j.msea.2014.03.111Search in Google Scholar
[2] H.C.Pan, Y.P.Ren, H.Fu, H.Zhao, L.Q.Wang, X.Y.Meng, G.W.Qin: J. Alloys Compd.663 (2016) 321–331. 10.1016/j.jallcom.2015.12.057Search in Google Scholar
[3] J.Zhu, J.B.Chen, T.Liu, J.X.Liu, W.Y.Wang, Z.K.Liu, X.D.Hui: Mater. Sci. Eng. A679 (2017) 476–483. 10.1016/j.msea.2016.10.071Search in Google Scholar
[4] T.J.Chen, D.H.Zhang, W.Wang, Y.Ma, Y.Hao: Mater. Trans.57 (2016) 1287–1295. 10.2320/matertrans.M2016035Search in Google Scholar
[5] M.Li, K.Zhang, Z.W.Du, X.G.Li, M.L.Ma: Trans. Nonferrous Met. Soc. China26 (2016) 1835–1842. 10.1016/S1003-6326(16)64230-9Search in Google Scholar
[6] R.G.Li, H.J.Zhang, G.Y.Fu: Mater. Charact.98 (2014) 107–112. 10.1016/j.matchar.2014.10.016Search in Google Scholar
[7] K.Liu, J.H.Zhang, H.Y.Lu, D.X.Tang, L.L.Rokhlin, F.M.Elkin, J.Meng: Mater. Des.31 (2010) 210–219. 10.1016/j.matdes.2009.06.030Search in Google Scholar
[8] L.Zhang, J.H.Zhang, C.Xu, S.J.Liu, Y.F.Jiao, L.J.Xu, Y.B.Wang, J.Meng, R.Z.Wu, M.L.Zhang: Mater. Des.61 (2014) 168–176. 10.1016/j.matdes.2014.04.071Search in Google Scholar
[9] L.Zhang, J.H.Zhang, Z.Leng, S.J.Liu, Q.Yang, R.Z.Wu, M.L.Zhang: Mater. Des.54 (2014) 256–263. 10.1016/j.matdes.2013.08.048Search in Google Scholar
[10] Y.Kawamura, M.Yamasaki: Mater. Trans.48 (2007) 2986–2992. 10.2320/matertrans.MER2007142Search in Google Scholar
[11] J.Zhu, X.H.Chen, L.Wang, W.Y.Wang, Z.K.Liu, J.X.Liu, X.D.Hui: J. Alloys Compd.703 (2017) 508–516. 10.1016/j.jallcom.2017.02.012Search in Google Scholar
[12] G.L.Bi, D.Q.Fang, L.Zhao, J.S.Lian, Q.Jiang, Z.H.Jiang: Mater. Sci. Eng. A528 (2011) 3609–3614. 10.1016/j.msea.2011.01.065Search in Google Scholar
[13] J.E.Saal, C.Wolverton: Acta Mater.68 (2014) 325–338. 10.1016/j.actamat.2013.10.055Search in Google Scholar
[14] Z.R.Liu, D.Y.Li: Comp. Mater. Sci.103 (2015) 90–96. 10.1016/j.commatsci.2015.03.004Search in Google Scholar
[15] K.Hagihara, A.Kinoshita, Y.Fukusumi, M.Yamasaki, Y.Kawamura: Mater. Sci. Eng. A560 (2013) 71–79. 10.1016/j.msea.2012.09.016Search in Google Scholar
[16] J.B.Shao, Z.Y.Chen, T.Chen, Z.Hu, X.J.Zhou, C.M.Liu: J. Magnesium Alloys4 (2016) 83–88. 10.1016/j.jma.2016.03.001Search in Google Scholar
[17] J.M.Yu, Z.M.Zhang, Q.Wang, X.Y.Yin, J.Y.Cui, H.N.Qi: J. Alloys Compd.704 (2017) 382–389. 10.1016/j.jallcom.2017.01.321Search in Google Scholar
[18] G.L.Bi, D.Q.Fang, W.C.Zhang, J.Sudagar, Q.X.Zhang, J.S.Lian, Z.H.Jiang: J. Mater. Sci. Technol.28 (2012) 543–551. 10.1016/S1005-0302(12)60095-4Search in Google Scholar
[19] G.L.Bi, Y.D.Li, X.F.Huang, T.J.Chen, J.S.Lian, Z.H.Jiang, Y.Ma, Y.Hao: Mater. Sci. Eng. A622 (2015) 52–60. 10.1016/j.msea.2014.11.002Search in Google Scholar
[20] X.H.Shao, Z.Q.Yang, X.L.Ma: Acta Mater.58 (2010) 4760–4771. 10.1016/j.actamat.2010.05.012Search in Google Scholar
[21] B.J.Lv, J.Peng, Y.Peng, A.T.Tang, F.S.Pan: Mater. Sci. Eng.A579 (2013) 209–216. 10.1016/j.msea.2013.05.022Search in Google Scholar
[22] G.D.Zou, X.C.Cai, D.Q.Fang, Z.Wang, T.S.Zhao, Q.M.Peng: Mater. Sci. Eng. A620 (2015) 10–15. 10.1016/j.msea.2014.09.103Search in Google Scholar
[23] X.M.Luo, G.L.Bi, J.Jiang, M.Li, R.G.Li, Y.D.Li, Y.Ma, Y.Hao: Trans. Nonferrous Met. Soc. China26 (2016) 390–397. 10.1016/S1003-6326(16)64127-4Search in Google Scholar
[24] Y.Yoshida, L.Cisar, S.Kamado, Y.Kojima: Mater. Trans.44 (2003) 468–475. 10.2464/jilm.52.559Search in Google Scholar
[25] K.Saito, A.Yasuhara, M.Nishijima, K.Hiraga: Mater. Trans.52 (2011) 1009–1015. 10.2320/matertrans.L-M2011805Search in Google Scholar
[26] H.Liu, J.Ju, F.M.Lu, J.L.Yan, J.Bai, J.H.Jiang, A.B.Ma: Mater. Sci. Eng. A682 (2017) 255–259. 10.1016/j.msea.2016.11.037Search in Google Scholar
[27] K.Hagihara, A.Kinoshita, Y.Sugino, M.Yamasaki, Y.Kawamura, H.Y.Yasuda, Y.Umakoshi: Acta Mater.58 (2010) 6282–6293. 10.1016/j.actamat.2010.07.050Search in Google Scholar
[28] W.Liu, J.S.Zhang, L.Y.Wei, C.X.Xu, X.M.Zong, J.Q.Hao: Mater. Sci. Eng. A681 (2017) 97–102. 10.1016/j.msea.2016.10.120Search in Google Scholar
[29] H.Liu, J.Ju, J.Bai, J.P.Sun, D.Song, J.L.Yan, J.H.Jiang, A.B.Ma: Metals7 (2017) 398. 10.3390/met7100398Search in Google Scholar
[30] X.H.Shao, Z.Z.Peng, Q.Q.Jin, X.L.Ma: Acta Mater.118 (2016) 177–186. 10.1016/j.actamat.2016.07.054Search in Google Scholar
[31] H.Liu, F.Xue, J.Bai, J.Zhou, Y.S.Sun: J. Mater. Sci. Technol.30 (2014) 128–133. 10.1016/j.jmst.2013.04.002Search in Google Scholar
[32] L.B.Tong, X.H.Li, H.J.Zhang: Mater. Sci. Eng. A563 (2013) 177–183. 10.1016/j.msea.2012.10.088Search in Google Scholar
[33] K.Hagihara, N.Yokotani, Y.Umakoshi: Intermetallics18 (2010) 267–276. 10.1016/j.intermet.2009.07.014Search in Google Scholar
[34] G.L.Bi, D.Q.Fang, Lei.Zhao, Q.X.Zhang, J.S.Lian, Q.Jiang, Z.H.Jiang: J. Alloys Compd.509 (2011) 8268–8275. 10.1016/j.jallcom.2011.05.117Search in Google Scholar
[35] H.Liu, K.Yan, J.L.Yan, F.Xue, J.P.Sun, J.H.Jiang, A.B.Ma: Trans. Nonferrous Met. Soc. China27 (2017) 63–72. 10.1016/S1003-6326(17)60007-4Search in Google Scholar
[36] Y.M.Zhu, A.J.Morton, J.F.Nie: Acta Mater.58 (2010) 2936–2947. 10.1016/j.actamat.2010.01.022Search in Google Scholar
[37] G.Q.Li, J.H.Zhang, R.Z.Wu, Y.Feng, S.J.Liu, X.J.Wang, Y.F.Jiao, Q.Yang, J.Meng: J. Mater. Sci. Technol.2017. 10.1016/j.jmst.2017.12.011Search in Google Scholar
[38] J.H.Zhang, C.Xu, Y.B.Jing, S.H.Lv, S.J.Liu, D.Q.Fang, J.P.Zhuang, M.L.Zhang, R.Z.Wu: Sci. Rep.5 (2015) 13933. 10.1038/srep13933Search in Google Scholar PubMed PubMed Central
[39] X.H.Tan, W.C.K.How, J.C.K.Weng, R.K.W.Onn, M.Gupta: Mater. Des.83 (2015) 443–450. 10.1016/j.matdes.2015.06.041Search in Google Scholar
[40] B.J.Lv, J.Peng, L.L.Zhu, Y.J.Wang, A.T.Tang: Mater. Sci. Eng. A599 (2014) 150–159. 10.1016/j.msea.2014.01.079Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Effect of lubricant additives on the tribological behavior of aluminum alloy against steel
- First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy
- Precipitation characteristics of a nickel-based single-crystal superalloy after long-term thermal exposure
- Dynamic evolution of the metastable structure and nano-precipitation of 7055 aluminum alloy under thermal deformation
- Microstructural evolution and high-temperature compressive properties of an extruded Mg–Dy–Zn alloy sheet
- Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steel
- Microstructural evolution, phase selection and properties of CoCrCuFeMnxNi high-entropy alloys
- Thermodynamic modelling of the Hf–Pt system
- Mechanical, tribological and oxidation resistance properties of Ni-based self-lubricating composite coatings at elevated temperature by APS
- Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis
- Co3O4/carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance
- Short Communications
- Reduced graphene oxide–SnO nanocomposites with good visible-light photoactivity
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Effect of lubricant additives on the tribological behavior of aluminum alloy against steel
- First evidence of grain boundary serration in a specifically heat treated wrought Alloy 625 Ni-based superalloy
- Precipitation characteristics of a nickel-based single-crystal superalloy after long-term thermal exposure
- Dynamic evolution of the metastable structure and nano-precipitation of 7055 aluminum alloy under thermal deformation
- Microstructural evolution and high-temperature compressive properties of an extruded Mg–Dy–Zn alloy sheet
- Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steel
- Microstructural evolution, phase selection and properties of CoCrCuFeMnxNi high-entropy alloys
- Thermodynamic modelling of the Hf–Pt system
- Mechanical, tribological and oxidation resistance properties of Ni-based self-lubricating composite coatings at elevated temperature by APS
- Pore formation mechanism of porous Ni–Cr–Al alloys prepared by elemental powder reactive synthesis
- Co3O4/carbon nano-onions composite as supercapacitor electrode and its excellent electrochemical performance
- Short Communications
- Reduced graphene oxide–SnO nanocomposites with good visible-light photoactivity
- DGM News
- DGM News