Microstructural and mechanical properties of novel β-type Ti–Nb–Ni alloys containing a second phase
-
Peiyou Li
Abstract
The microstructure and mechanical properties of novel β-type Ti74-xNb26Nix (x = 4, 8, 12, 16, 20, and 24 at.%) alloys with a low Young's modulus and containing different amounts of a second phase (Ti2Ni and Ni3Nb) were investigated. The experimental results show that the relative volume fractions of Ti2Ni phase in the Ti–Nb–Ni alloys increased with increasing Ni content. The mechanical properties of Ti–Nb–Ni alloys varied with the amount of second phase. Ti70Nb26Ni4, Ti66Nb26Ni8, and Ti62Nb26Ni12 alloys containing a small amount of Ti2Ni phase exhibited a higher plastic strain; however, Ti58Nb26Ni16, Ti54Nb26 · Ni20, and Ti50Nb26Ni24 alloys containing a large amount of Ti2Ni phase and a small amount of Ni3Nb phase exhibited a small plastic strain. The increase in strength and decrease in plasticity of alloys can be mainly attributed to the increase in high-strength brittle Ti2Ni phase and grain refining of the β-phase matrix. In addition, Ti50Nb26Ni24 alloy with a low Young's modulus has a high yield strength and elastic energy; this has potential application as biomedical and functional materials.
References
[1] H.Attar, S.E.Haghighi, D.Kent, X.H.Wu, M.S.Dargusch: Mater. Sci. Eng. A705 (2017) 385. 10.1016/j.msea.2017.08.103Suche in Google Scholar
[2] B.Song, S.Dong, B.Zhang, H.Liao, C.Coddet: Mater. Des.35 (2012) 120. 10.1016/j.matdes.2011.09.051Suche in Google Scholar
[3] M.Niinomi, M.Nakai, J.Hieda: Acta Biomater.8 (2012) 3888. 22765961 10.1016/j.actbio.2012.06.037Suche in Google Scholar PubMed
[4] H.Attar, M.Calin, L.C.Zhang, S.Scudino, J.Eckert: Mater. Sci. Eng. A593 (2014) 170. 10.1016/j.msea.2013.11.038Suche in Google Scholar
[5] W.F.Ho, S.C.Wu, S.K.Hsu, Y.C.Li, H.C.Hsu: Mater. Sci. Eng. C32 (2012) 517. 10.1016/j.msec.2011.12.003Suche in Google Scholar
[6] W.F.Ho, C.H.Pan, S.C.Wu, H.C.Hsu: J. Alloys Compd.472 (2009) 546. 10.1016/j.jallcom.2008.05.015Suche in Google Scholar
[7] L.L.Chang, Y.D.Wang, Y.Ren: Mater. Sci. Eng. A651 (2016) 442. 10.1016/j.msea.2015.11.005Suche in Google Scholar
[8] S.E.Haghighi, Y.J.Liu, G.H.Cao, L.C.Zhang: Mater. Des.97 (2016) 279. 10.1016/j.matdes.2016.02.094Suche in Google Scholar
[9] S.E.Haghighi, K.G.Prashanth, H.Attar, A.K.Chaubey, G.H.Cao, L.C.Zhang: Mater. Des.111 (2016) 592. 10.1016/j.matdes.2016.09.29Suche in Google Scholar
[10] S.E.Haghighi, Y.J.Liu, G.H.Cao, L.C.Zhang: Mater. Sci. Eng.C60 (2017) 503. 26706557 10.1016/j.msec.2015.11.072Suche in Google Scholar PubMed
[11] S.E.Haghighi, H.B.Lu, G.Y.Jian, G.H.Cao, D.Habibi, L.C.Zhang: Mater. Des.76 (2015) 47. 10.1016/j.matdes.2015.03.028Suche in Google Scholar
[12] M.Wen, C.Wen, P.Hodgson, Y.Li: Mater. Des.56 (2014) 629. 10.1016/j.matdes.2013.11.066Suche in Google Scholar
[13] P.S.Nnamchi, C.S.Obayi, I.Todd, M.W.Rainforth: J. Mech. Behav. Biomed. Mater.60 (2016) 68. 26773649 10.106/j.jmbbm.2015.12.023Suche in Google Scholar
[14] P.E.L.Moraes, R.J.Contieri, E.S.N.Lopes, A.Robin, R.Caram: Mater. Charact.96 (2014) 273. 10.1016/j.matchar.2014.08.014Suche in Google Scholar
[15] D.Kuroda, M.Niinomi, M.Morinaga, Y.Kato, T.Yashiro: Mater. Sci. Eng. A243 (1998) 244. 10.1016/S0921-5093(97)00808-3Suche in Google Scholar
[16] A.F.Camilo, M.R.Salvador, F.H.Dal Bó, M.O.Costa, E.S.N.Taipina, R.C.Lopes: J. Mech. Behav. Biomed. Mater.65 (2017) 761. 27768940 10.106/j.jmbbm.2016.09.024Suche in Google Scholar
[17] H.Y.Kim, Y.Ikehara, J.I.Kim, H.Hosoda, S.Miyazaki: Acta Mater.54 (2006) 2419. 10.1016/j.actamat.2006.01.019Suche in Google Scholar
[18] S.Guo, J.S.Zhang, X.N.Cheng, X.Q.Zhao: J. Alloys Compds.644 (2015) 411. 10.1016/j.jallcom.2015.05.071Suche in Google Scholar
[19] Q.Li, J.J.Li, G.H.Ma, X.Y.Liu, D.Pan: Mater. Des.111 (2016) 421. 10.1016/j.matdes.2016.09.026Suche in Google Scholar
[20] F.Sun, Y.L.Hao, S.Nowak, T.Gloriant, P.Laheurte, F.Prima: J. Mech. Behav. Biomed. Mater.4 (2011) 1864. 22098885 10.1016/j.jmbbm.2011.06.003Suche in Google Scholar PubMed
[21] A.H.Hussein, M.A.H.Gepreel, M.K.Gouda, A.M.Hefnawy, S.H.Kandil: Mater. Sci. Eng. C61 (2016) 574. 26838885 10.1016/j.msec.2015.12.071Suche in Google Scholar PubMed
[22] E.L.Paulo, R.J.Moraes, E.S.N.Contieri, A.R.Lopes, C.Rubens: Mater. Charact.96 (2014) 273. 10.1016/j.matchar.2014.08.014Suche in Google Scholar
[23] L.Nie, Y.Z.Zhan, T.Hu, X.X.Chen, C.H.Wang: J. Mech. Behav. Biomed. Mater.29 (2014) 1. 24036526 10.1016/j.jmbbm.2013.08.019Suche in Google Scholar PubMed
[24] L.Slokar, T.Matković, P.Matković: Mater. Des.33 (2012) 26. 10.1016/j.matdes.2011.06.052Suche in Google Scholar
[25] I.V.Okulov, A.S.Volegov, H.Attar, M.Bönisch, S.Ehtemam-Haghighi, M.Calin, J.Eckert: J. Mech. Behav. Biomed. Mater.65 (2017) 866. 27810733 10.1016/j.jmbbm.2016.10.013Suche in Google Scholar PubMed
[26] P.Jetty, S.Jayaram, J.Veinot, M.Pratt: J. Vasc. Surg.58 (2013) 1388. 23611713 10.1016/j.jvs.2013.01.041Suche in Google Scholar PubMed
[27] A.Takeuchi, A.Inoue: Mater. Trans.46 (2005) 2817. 10.2320/matertrans.46.2817Suche in Google Scholar
[28] Y.H.Hon, J.Y.Wang, Y.N.Pang: Mater. Trans.44 (2003) 2384. 10.2320/matertrans.44.2384Suche in Google Scholar
[29] M.Niinomi, T.Hattori, K.Morikawa, T.Kasuga, A.Suzuki, H.Fukui, S.Niwa: Mater. Trans.43 (2002) 2970. 10.2320/matertrans.43.2970Suche in Google Scholar
[30] S.Ozan, J.Lin, Y.Li, R.Ipek, C.Wen: Acta Biomater, 20 (2015) 176. 25818950 10.1016/j.actbio.2015.03.023Suche in Google Scholar PubMed
[31] P.Y.Li: Mater. Res. Express, 4 (2017) 086505. 10.1088/2053-1591/aa80fcSuche in Google Scholar
[32] Z.P.Wang, in: J.Chen, W.Yan, Q.X.Liu (Eds.), Material research method, Chemical Industry Press, Beijing, China (2011) 16.Suche in Google Scholar
[33] P.Y.Li, S.D.Li, Z.J.Tian, Z.G.Huang, F.M.Zhang, Y.W.Du: J. Alloys Compd.478 (2009) 193. 10.1016/j.jallcom.2008.11.117Suche in Google Scholar
[34] Y.Li, C.Yang, H.Zhao, S.Qu, X.Li, Y.Li: Materials7 (2014) 1709. 28788539 10.3390/ma7031709Suche in Google Scholar PubMed PubMed Central
[35] G.Welsch, R.Boyer, E.Collings: Materials Properties Handbook: Titanium Alloys, Forth ed.ASM international, Ohio, 1993.Suche in Google Scholar
[36] Y.Ren, F.Wang, S.Wang, C.Tan, X.Yu, J.Jiang, H.Cai: Mater. Sci. Eng. A562 (2013) 137. 10.1016/j.msea.2012.10.098Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Dynamic fragmentation and spheroidization of α phase grains during hot deformation of Ti-6Al-4V alloy
- Formation and characterization of hot tearing in AZ series alloys
- The effect of quench-aging on the mechanical properties of Zn-27Al-1Cu alloy
- Microstructural and mechanical properties of novel β-type Ti–Nb–Ni alloys containing a second phase
- Microstructure evolution mechanisms of undercooled Ni80Cu20 alloys
- Microstructures and tensile properties of CuZrAlNb metallic glass composites under different cooling rates
- Influence of a rare-earth element on the solidification behaviour and mechanical properties of undercooled Al–Si alloys
- Microstructure of aluminide coatings on Ti6Al4V alloy produced by the slurry method with inorganic binder
- Ultrathin SnO2 nanorod/reduced graphene oxide nanosheet composites for electrochemical supercapacitor applications with excellent cyclic stability
- Combustion synthesis and formation mechanism of silver nanoparticles
- Phase relationship of the Ag–Zr–Cr system at 1000 and 750°C
- Thermal properties of carbonized composite materials based on carbon filled elastomeric matrices
- Short Communications
- Surface morphology and phase stability of titanium irradiated with 168 MeV 136Xe ions
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Dynamic fragmentation and spheroidization of α phase grains during hot deformation of Ti-6Al-4V alloy
- Formation and characterization of hot tearing in AZ series alloys
- The effect of quench-aging on the mechanical properties of Zn-27Al-1Cu alloy
- Microstructural and mechanical properties of novel β-type Ti–Nb–Ni alloys containing a second phase
- Microstructure evolution mechanisms of undercooled Ni80Cu20 alloys
- Microstructures and tensile properties of CuZrAlNb metallic glass composites under different cooling rates
- Influence of a rare-earth element on the solidification behaviour and mechanical properties of undercooled Al–Si alloys
- Microstructure of aluminide coatings on Ti6Al4V alloy produced by the slurry method with inorganic binder
- Ultrathin SnO2 nanorod/reduced graphene oxide nanosheet composites for electrochemical supercapacitor applications with excellent cyclic stability
- Combustion synthesis and formation mechanism of silver nanoparticles
- Phase relationship of the Ag–Zr–Cr system at 1000 and 750°C
- Thermal properties of carbonized composite materials based on carbon filled elastomeric matrices
- Short Communications
- Surface morphology and phase stability of titanium irradiated with 168 MeV 136Xe ions
- DGM News
- DGM News