Home Ultrathin SnO2 nanorod/reduced graphene oxide nanosheet composites for electrochemical supercapacitor applications with excellent cyclic stability
Article
Licensed
Unlicensed Requires Authentication

Ultrathin SnO2 nanorod/reduced graphene oxide nanosheet composites for electrochemical supercapacitor applications with excellent cyclic stability

  • Manna Liu , Shishuai Sun , Liying Yang and Shougen Yin
Published/Copyright: July 27, 2018
Become an author with De Gruyter Brill

Abstract

Composites of ultrathin SnO2 nanorods, ∼20 nm in diameter and ∼100 nm in length, intercalated with reduced graphene oxide nanosheets were synthesized by a simple one-step hydrothermal process. The electrochemical performance of the composites as electrode materials for supercapacitors was studied in 1 M Na2SO4 electrolyte. The experimental results indicated that a maximum specific capacitance of 184.6 F g−1 could be obtained from composites at a current density of 100 mA g−1, which was much higher than that of pure SnO2 (62.4 F g−1). Furthermore, the composite exhibited excellent cycling stability (the specific capacitance still retained 98% after 6000 cycles when the scan rate was 50 mV s−1). The excellent electrochemical performance of the composites was attributed to the synergistic effect of SnO2 nanorods and reduced graphene oxide, which makes up for the shortcomings of the individual components. These results indicated that the prepared composites are excellent candidates as electrode materials for high performance energy storage devices.


*Correspondence address, Dr. Shishuai Sun, College of Science, Tianjin University of Technology, 391 Binshui West Road, Xiqing district, Tianjin, 300384, P.R. China, Tel.: +086-022-60215559, E-mail:
** Prof. Liying Yang, School of Materials Science and Engineering, Tianjin University of Technology, 391 Binshui West Road, Xiqing district, Tianjin, 300384, P.R. China, Tel.: +086-022-60215226, E-mail:

References

[1] L.Li, K.Xia, L.Li, S.Shang, Q.Guo, G.Yan: J. Nanopart. Res.14 (2012) 18. 10.1007/s11051-012-0908-3Search in Google Scholar

[2] X.Li, B.Q.Wei: Nano Energy.2 (2013) 159173. 10.1016/j.nanoen.2012.09.008Search in Google Scholar

[3] A.Ramadoss, S.J.Kim: Carbon63 (2013) 434445. 10.1016/j.carbon.2013.07.006Search in Google Scholar

[4] L.Li, Z.A.Hu, N.An, Y.Y.Yang, Z.M.Li, Hong Y.Wu: J. Phys. Chem. C.118 (2014) 2286522872. 10.1021/jp505744pSearch in Google Scholar

[5] T.M.Dinh, A.Achour, S.Vizireanu, G.Dinescu, L.Nistor, K.Armstrong, D.Guay, D.Pech: Nano Energy.10 (2014) 288294. 10.1016/j.nanoen.2014.10.003Search in Google Scholar

[6] B.Saravanakumar, Kamatchi K.Purushothaman, G.Muralidharan: ACS Appl. Mater. Interfaces.4 (2012) 44844490. 22913341 10.1021/am301162pSearch in Google Scholar PubMed

[7] J.L.Lv, Z.Q.Wang, T.X.Liang, M.Yang, S.Ken, M.Hideo: J. Electroanal. Chem.799 (2017) 595601. 10.1016/j.jelechem.2017.07.013Search in Google Scholar

[8] S.Wang, S.P.Jiang, X.Wang: Electrochim. Acta56 (2011) 33383344. 10.1016/j.electacta.2011.01.016Search in Google Scholar

[9] C.He, Y.Xiao, H.Dong, Y.Liu, M.Zheng, K.Xiao, X.Liu, H.Zhang, B.Lei: Electrochim. Acta142 (2014) 157166. 10.1016/j.electacta.2014.07.077Search in Google Scholar

[10] Y.Wang, Y.Liu, J.Zhang: J. Nanopart. Res.17 (2015) 110. 10.1007/s11051-015-3228-6Search in Google Scholar

[11] F.Li, J.Song, H.Yang, S.Gan, Q.Zhang, D.Han, A.Ivaska, L.Niu: Nanotechnology20 (2009) 455602. 10.1088/0957-4484/20/45/455602Search in Google Scholar PubMed

[12] J.S.Chen, X.W.Lou: Small91 (2013) 8771893. 10.1002/smll.201202601Search in Google Scholar PubMed

[13] J.Liu, J.Huang, L.Hao, H.Liu, X.Li: Ceram. Int.39 (2013) 86238627. 10.1016/j.ceramint.2013.04.037Search in Google Scholar

[14] L.S.Zhang, L.Y.Jiang, H.J.Yan, W.D.Wang, W.Wang, W.G.Song, Y.G.Guo, L.J.Wan: J. Mater. Chem.20 (2010) 54625467. 10.1039/C0JM00672FSearch in Google Scholar

[15] Y.Haldorai, Y.S.Huh, Y.K.Han: New J. Chem.39 (2015) 85058512. 10.1039/C5NJ01442ESearch in Google Scholar

[16] Y.K.Wang, Y.S.Liu, J.M.Zhang: J. Nanopart. Res.17 (2015) 420. 10.1007/s11051-015-3228-6Search in Google Scholar

[17] S.P.Lim, N.M.Huang, H.N.Lim: Ceram. Int.6 (2013) 66476655. 10.1016/j.ceramint.2013.01.102Search in Google Scholar

[18] L.Shi, Y.Xu, Q.Li: Nanoscale2 (2010) 21042108. 20689879 10.1039/C0NR00279HSearch in Google Scholar PubMed

[19] B.Wang, D.Guan, Z.Gao, J.Wang, Z.Li, W.Yang, L.Liu: Mater. Chem. Phys.141 (2013) 18. 10.1016/j.matchemphys.2013.02.052Search in Google Scholar

[20] C.Xu, X.Wang, J.Zhu: J. Phys. Chem. C112 (2008) 1984119845. 10.1021/jp807989bSearch in Google Scholar

[21] M.Saranya, R.Ramachandran, P.Kollu, S.K.Jeong, A.N.Grace: RSC Adv.5 (2015) 1583115840. 10.1039/C4RA09029BSearch in Google Scholar

[22] L.Qiu, X.Yang, X.Gou, W.Yang, Z.F.Ma, G.G.Wallace, D.Li: Chem. Eur. J.16 (2010) 1065310658. 10.1002/chem.201001771Search in Google Scholar PubMed

[23] P.G.Ren, D.X.Yan, X.Ji, T.Chen, Z.M.Li: Nanotechnology22 (2011) 55705. 21178230 10.1088/0957-4484/22/5/055705Search in Google Scholar PubMed

[24] J.Liang, W.Wei, D.Zhong, Q.Yang, L.Li, L.Guo: ACS Appl. Mater. Interfaces4 (2012) 454459. 10.1021/am201541sSearch in Google Scholar PubMed

[25] H.He, J.Klinowski, M.Forster, A.Lerf: Chem. Phys. Lett.287 (1998) 5356. 10.1016/S0009-2614(98)00144-4Search in Google Scholar

[26] A.Lerf, H.He, M.Forster, J.Klinowski: J. Phys. Chem. B.102, 44774482 (1998). 10.1021/jp9731821Search in Google Scholar

[27] M.Hirata, T.Gotou, M.Ohba: Carbon43 (2005) 503510. 10.1016/j.carbon.2004.10.009Search in Google Scholar

[28] T.Szabó, A.Szeri, I.Dékány: Carbon43 (2005) 8794. 10.1016/j.carbon.2004.08.025Search in Google Scholar

[29] F.Tuinstra, L.Koenig: J. Chem. Phys.53 (1970) 11261130. 10.1063/1.1674108Search in Google Scholar

[30] L.Wang, D.Wang, Z.Dong, F.Zhang, J.Jin: Nano Lett.13 (2013) 17111716. 10.1021/nl400269dSearch in Google Scholar PubMed

[31] S.Stankovich, R.D.Piner, X.Chen, N.Wu, S.T.Nguyen, R.S.Ruoff: J. Mater. Chem.16 (2006) 155158. 10.1039/B512799HSearch in Google Scholar

[32] H.Su, T.Wang, S.Zhang, J.Song, C.Mao, H.Niu, B.Jin, J.Wu, Y.Tian: Solid State Sci.14 (2012) 677681. 10.1016/j.solidstatesciences.2012.03.020Search in Google Scholar

[33] D.Yu, L.Dai: J. Phys. Chem. Lett.1 (2010) 467470. 10.1021/jz100533tSearch in Google Scholar

[34] J.Zhu, J.He: ACS Appl. Mater. Interfaces4 (2012) 17701776. 10.1021/am3000165Search in Google Scholar PubMed

[35] S.Ren, Y.Yang, M.Xu, H.Cai, C.Hao, X.Wang: Colloids Surf. A Physicochem. Eng. Asp.444 (2014) 2632. 10.1016/j.colsurfa.2013.12.028Search in Google Scholar

[36] Z.J.Li, T.X.Chang, G.Q.Yun, Y.Jia: Powder Technol.224 (2012) 306310. 10.1016/j.powtec.2012.03.012Search in Google Scholar

[37] Z.Luo, Y.Zhu, E.Liu, T.Hu, Z.Li, T.Liu, L.Song: Mater. Res. Bull.60 (2014) 105110. 10.1016/j.materresbull.2014.08.022Search in Google Scholar

Received: 2018-01-08
Accepted: 2018-02-27
Published Online: 2018-07-27
Published in Print: 2018-08-10

© 2018, Carl Hanser Verlag, München

Downloaded on 7.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111662/html
Scroll to top button