Ultrathin SnO2 nanorod/reduced graphene oxide nanosheet composites for electrochemical supercapacitor applications with excellent cyclic stability
-
Manna Liu
Abstract
Composites of ultrathin SnO2 nanorods, ∼20 nm in diameter and ∼100 nm in length, intercalated with reduced graphene oxide nanosheets were synthesized by a simple one-step hydrothermal process. The electrochemical performance of the composites as electrode materials for supercapacitors was studied in 1 M Na2SO4 electrolyte. The experimental results indicated that a maximum specific capacitance of 184.6 F g−1 could be obtained from composites at a current density of 100 mA g−1, which was much higher than that of pure SnO2 (62.4 F g−1). Furthermore, the composite exhibited excellent cycling stability (the specific capacitance still retained 98% after 6000 cycles when the scan rate was 50 mV s−1). The excellent electrochemical performance of the composites was attributed to the synergistic effect of SnO2 nanorods and reduced graphene oxide, which makes up for the shortcomings of the individual components. These results indicated that the prepared composites are excellent candidates as electrode materials for high performance energy storage devices.
References
[1] L.Li, K.Xia, L.Li, S.Shang, Q.Guo, G.Yan: J. Nanopart. Res.14 (2012) 1–8. 10.1007/s11051-012-0908-3Search in Google Scholar
[2] X.Li, B.Q.Wei: Nano Energy.2 (2013) 159–173. 10.1016/j.nanoen.2012.09.008Search in Google Scholar
[3] A.Ramadoss, S.J.Kim: Carbon63 (2013) 434–445. 10.1016/j.carbon.2013.07.006Search in Google Scholar
[4] L.Li, Z.A.Hu, N.An, Y.Y.Yang, Z.M.Li, Hong Y.Wu: J. Phys. Chem. C.118 (2014) 22865–22872. 10.1021/jp505744pSearch in Google Scholar
[5] T.M.Dinh, A.Achour, S.Vizireanu, G.Dinescu, L.Nistor, K.Armstrong, D.Guay, D.Pech: Nano Energy.10 (2014) 288–294. 10.1016/j.nanoen.2014.10.003Search in Google Scholar
[6] B.Saravanakumar, Kamatchi K.Purushothaman, G.Muralidharan: ACS Appl. Mater. Interfaces.4 (2012) 4484–4490. 22913341 10.1021/am301162pSearch in Google Scholar PubMed
[7] J.L.Lv, Z.Q.Wang, T.X.Liang, M.Yang, S.Ken, M.Hideo: J. Electroanal. Chem.799 (2017) 595–601. 10.1016/j.jelechem.2017.07.013Search in Google Scholar
[8] S.Wang, S.P.Jiang, X.Wang: Electrochim. Acta56 (2011) 3338–3344. 10.1016/j.electacta.2011.01.016Search in Google Scholar
[9] C.He, Y.Xiao, H.Dong, Y.Liu, M.Zheng, K.Xiao, X.Liu, H.Zhang, B.Lei: Electrochim. Acta142 (2014) 157–166. 10.1016/j.electacta.2014.07.077Search in Google Scholar
[10] Y.Wang, Y.Liu, J.Zhang: J. Nanopart. Res.17 (2015) 1–10. 10.1007/s11051-015-3228-6Search in Google Scholar
[11] F.Li, J.Song, H.Yang, S.Gan, Q.Zhang, D.Han, A.Ivaska, L.Niu: Nanotechnology20 (2009) 455602. 10.1088/0957-4484/20/45/455602Search in Google Scholar PubMed
[12] J.S.Chen, X.W.Lou: Small91 (2013) 877–1893. 10.1002/smll.201202601Search in Google Scholar PubMed
[13] J.Liu, J.Huang, L.Hao, H.Liu, X.Li: Ceram. Int.39 (2013) 8623–8627. 10.1016/j.ceramint.2013.04.037Search in Google Scholar
[14] L.S.Zhang, L.Y.Jiang, H.J.Yan, W.D.Wang, W.Wang, W.G.Song, Y.G.Guo, L.J.Wan: J. Mater. Chem.20 (2010) 5462–5467. 10.1039/C0JM00672FSearch in Google Scholar
[15] Y.Haldorai, Y.S.Huh, Y.K.Han: New J. Chem.39 (2015) 8505–8512. 10.1039/C5NJ01442ESearch in Google Scholar
[16] Y.K.Wang, Y.S.Liu, J.M.Zhang: J. Nanopart. Res.17 (2015) 420. 10.1007/s11051-015-3228-6Search in Google Scholar
[17] S.P.Lim, N.M.Huang, H.N.Lim: Ceram. Int.6 (2013) 6647–6655. 10.1016/j.ceramint.2013.01.102Search in Google Scholar
[18] L.Shi, Y.Xu, Q.Li: Nanoscale2 (2010) 2104–2108. 20689879 10.1039/C0NR00279HSearch in Google Scholar PubMed
[19] B.Wang, D.Guan, Z.Gao, J.Wang, Z.Li, W.Yang, L.Liu: Mater. Chem. Phys.141 (2013) 1–8. 10.1016/j.matchemphys.2013.02.052Search in Google Scholar
[20] C.Xu, X.Wang, J.Zhu: J. Phys. Chem. C112 (2008) 19841–19845. 10.1021/jp807989bSearch in Google Scholar
[21] M.Saranya, R.Ramachandran, P.Kollu, S.K.Jeong, A.N.Grace: RSC Adv.5 (2015) 15831–15840. 10.1039/C4RA09029BSearch in Google Scholar
[22] L.Qiu, X.Yang, X.Gou, W.Yang, Z.F.Ma, G.G.Wallace, D.Li: Chem. Eur. J.16 (2010) 10653–10658. 10.1002/chem.201001771Search in Google Scholar PubMed
[23] P.G.Ren, D.X.Yan, X.Ji, T.Chen, Z.M.Li: Nanotechnology22 (2011) 55705. 21178230 10.1088/0957-4484/22/5/055705Search in Google Scholar PubMed
[24] J.Liang, W.Wei, D.Zhong, Q.Yang, L.Li, L.Guo: ACS Appl. Mater. Interfaces4 (2012) 454–459. 10.1021/am201541sSearch in Google Scholar PubMed
[25] H.He, J.Klinowski, M.Forster, A.Lerf: Chem. Phys. Lett.287 (1998) 53–56. 10.1016/S0009-2614(98)00144-4Search in Google Scholar
[26] A.Lerf, H.He, M.Forster, J.Klinowski: J. Phys. Chem. B.102, 4477–4482 (1998). 10.1021/jp9731821Search in Google Scholar
[27] M.Hirata, T.Gotou, M.Ohba: Carbon43 (2005) 503–510. 10.1016/j.carbon.2004.10.009Search in Google Scholar
[28] T.Szabó, A.Szeri, I.Dékány: Carbon43 (2005) 87–94. 10.1016/j.carbon.2004.08.025Search in Google Scholar
[29] F.Tuinstra, L.Koenig: J. Chem. Phys.53 (1970) 1126–1130. 10.1063/1.1674108Search in Google Scholar
[30] L.Wang, D.Wang, Z.Dong, F.Zhang, J.Jin: Nano Lett.13 (2013) 1711–1716. 10.1021/nl400269dSearch in Google Scholar PubMed
[31] S.Stankovich, R.D.Piner, X.Chen, N.Wu, S.T.Nguyen, R.S.Ruoff: J. Mater. Chem.16 (2006) 155–158. 10.1039/B512799HSearch in Google Scholar
[32] H.Su, T.Wang, S.Zhang, J.Song, C.Mao, H.Niu, B.Jin, J.Wu, Y.Tian: Solid State Sci.14 (2012) 677–681. 10.1016/j.solidstatesciences.2012.03.020Search in Google Scholar
[33] D.Yu, L.Dai: J. Phys. Chem. Lett.1 (2010) 467–470. 10.1021/jz100533tSearch in Google Scholar
[34] J.Zhu, J.He: ACS Appl. Mater. Interfaces4 (2012) 1770–1776. 10.1021/am3000165Search in Google Scholar PubMed
[35] S.Ren, Y.Yang, M.Xu, H.Cai, C.Hao, X.Wang: Colloids Surf. A Physicochem. Eng. Asp.444 (2014) 26–32. 10.1016/j.colsurfa.2013.12.028Search in Google Scholar
[36] Z.J.Li, T.X.Chang, G.Q.Yun, Y.Jia: Powder Technol.224 (2012) 306–310. 10.1016/j.powtec.2012.03.012Search in Google Scholar
[37] Z.Luo, Y.Zhu, E.Liu, T.Hu, Z.Li, T.Liu, L.Song: Mater. Res. Bull.60 (2014) 105–110. 10.1016/j.materresbull.2014.08.022Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dynamic fragmentation and spheroidization of α phase grains during hot deformation of Ti-6Al-4V alloy
- Formation and characterization of hot tearing in AZ series alloys
- The effect of quench-aging on the mechanical properties of Zn-27Al-1Cu alloy
- Microstructural and mechanical properties of novel β-type Ti–Nb–Ni alloys containing a second phase
- Microstructure evolution mechanisms of undercooled Ni80Cu20 alloys
- Microstructures and tensile properties of CuZrAlNb metallic glass composites under different cooling rates
- Influence of a rare-earth element on the solidification behaviour and mechanical properties of undercooled Al–Si alloys
- Microstructure of aluminide coatings on Ti6Al4V alloy produced by the slurry method with inorganic binder
- Ultrathin SnO2 nanorod/reduced graphene oxide nanosheet composites for electrochemical supercapacitor applications with excellent cyclic stability
- Combustion synthesis and formation mechanism of silver nanoparticles
- Phase relationship of the Ag–Zr–Cr system at 1000 and 750°C
- Thermal properties of carbonized composite materials based on carbon filled elastomeric matrices
- Short Communications
- Surface morphology and phase stability of titanium irradiated with 168 MeV 136Xe ions
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dynamic fragmentation and spheroidization of α phase grains during hot deformation of Ti-6Al-4V alloy
- Formation and characterization of hot tearing in AZ series alloys
- The effect of quench-aging on the mechanical properties of Zn-27Al-1Cu alloy
- Microstructural and mechanical properties of novel β-type Ti–Nb–Ni alloys containing a second phase
- Microstructure evolution mechanisms of undercooled Ni80Cu20 alloys
- Microstructures and tensile properties of CuZrAlNb metallic glass composites under different cooling rates
- Influence of a rare-earth element on the solidification behaviour and mechanical properties of undercooled Al–Si alloys
- Microstructure of aluminide coatings on Ti6Al4V alloy produced by the slurry method with inorganic binder
- Ultrathin SnO2 nanorod/reduced graphene oxide nanosheet composites for electrochemical supercapacitor applications with excellent cyclic stability
- Combustion synthesis and formation mechanism of silver nanoparticles
- Phase relationship of the Ag–Zr–Cr system at 1000 and 750°C
- Thermal properties of carbonized composite materials based on carbon filled elastomeric matrices
- Short Communications
- Surface morphology and phase stability of titanium irradiated with 168 MeV 136Xe ions
- DGM News
- DGM News