Microstructural and mechanical properties of novel β-type Ti–Nb–Ni alloys containing a second phase
-
Peiyou Li
Abstract
The microstructure and mechanical properties of novel β-type Ti74-xNb26Nix (x = 4, 8, 12, 16, 20, and 24 at.%) alloys with a low Young's modulus and containing different amounts of a second phase (Ti2Ni and Ni3Nb) were investigated. The experimental results show that the relative volume fractions of Ti2Ni phase in the Ti–Nb–Ni alloys increased with increasing Ni content. The mechanical properties of Ti–Nb–Ni alloys varied with the amount of second phase. Ti70Nb26Ni4, Ti66Nb26Ni8, and Ti62Nb26Ni12 alloys containing a small amount of Ti2Ni phase exhibited a higher plastic strain; however, Ti58Nb26Ni16, Ti54Nb26 · Ni20, and Ti50Nb26Ni24 alloys containing a large amount of Ti2Ni phase and a small amount of Ni3Nb phase exhibited a small plastic strain. The increase in strength and decrease in plasticity of alloys can be mainly attributed to the increase in high-strength brittle Ti2Ni phase and grain refining of the β-phase matrix. In addition, Ti50Nb26Ni24 alloy with a low Young's modulus has a high yield strength and elastic energy; this has potential application as biomedical and functional materials.
References
[1] H.Attar, S.E.Haghighi, D.Kent, X.H.Wu, M.S.Dargusch: Mater. Sci. Eng. A705 (2017) 385. 10.1016/j.msea.2017.08.103Search in Google Scholar
[2] B.Song, S.Dong, B.Zhang, H.Liao, C.Coddet: Mater. Des.35 (2012) 120. 10.1016/j.matdes.2011.09.051Search in Google Scholar
[3] M.Niinomi, M.Nakai, J.Hieda: Acta Biomater.8 (2012) 3888. 22765961 10.1016/j.actbio.2012.06.037Search in Google Scholar PubMed
[4] H.Attar, M.Calin, L.C.Zhang, S.Scudino, J.Eckert: Mater. Sci. Eng. A593 (2014) 170. 10.1016/j.msea.2013.11.038Search in Google Scholar
[5] W.F.Ho, S.C.Wu, S.K.Hsu, Y.C.Li, H.C.Hsu: Mater. Sci. Eng. C32 (2012) 517. 10.1016/j.msec.2011.12.003Search in Google Scholar
[6] W.F.Ho, C.H.Pan, S.C.Wu, H.C.Hsu: J. Alloys Compd.472 (2009) 546. 10.1016/j.jallcom.2008.05.015Search in Google Scholar
[7] L.L.Chang, Y.D.Wang, Y.Ren: Mater. Sci. Eng. A651 (2016) 442. 10.1016/j.msea.2015.11.005Search in Google Scholar
[8] S.E.Haghighi, Y.J.Liu, G.H.Cao, L.C.Zhang: Mater. Des.97 (2016) 279. 10.1016/j.matdes.2016.02.094Search in Google Scholar
[9] S.E.Haghighi, K.G.Prashanth, H.Attar, A.K.Chaubey, G.H.Cao, L.C.Zhang: Mater. Des.111 (2016) 592. 10.1016/j.matdes.2016.09.29Search in Google Scholar
[10] S.E.Haghighi, Y.J.Liu, G.H.Cao, L.C.Zhang: Mater. Sci. Eng.C60 (2017) 503. 26706557 10.1016/j.msec.2015.11.072Search in Google Scholar PubMed
[11] S.E.Haghighi, H.B.Lu, G.Y.Jian, G.H.Cao, D.Habibi, L.C.Zhang: Mater. Des.76 (2015) 47. 10.1016/j.matdes.2015.03.028Search in Google Scholar
[12] M.Wen, C.Wen, P.Hodgson, Y.Li: Mater. Des.56 (2014) 629. 10.1016/j.matdes.2013.11.066Search in Google Scholar
[13] P.S.Nnamchi, C.S.Obayi, I.Todd, M.W.Rainforth: J. Mech. Behav. Biomed. Mater.60 (2016) 68. 26773649 10.106/j.jmbbm.2015.12.023Search in Google Scholar
[14] P.E.L.Moraes, R.J.Contieri, E.S.N.Lopes, A.Robin, R.Caram: Mater. Charact.96 (2014) 273. 10.1016/j.matchar.2014.08.014Search in Google Scholar
[15] D.Kuroda, M.Niinomi, M.Morinaga, Y.Kato, T.Yashiro: Mater. Sci. Eng. A243 (1998) 244. 10.1016/S0921-5093(97)00808-3Search in Google Scholar
[16] A.F.Camilo, M.R.Salvador, F.H.Dal Bó, M.O.Costa, E.S.N.Taipina, R.C.Lopes: J. Mech. Behav. Biomed. Mater.65 (2017) 761. 27768940 10.106/j.jmbbm.2016.09.024Search in Google Scholar
[17] H.Y.Kim, Y.Ikehara, J.I.Kim, H.Hosoda, S.Miyazaki: Acta Mater.54 (2006) 2419. 10.1016/j.actamat.2006.01.019Search in Google Scholar
[18] S.Guo, J.S.Zhang, X.N.Cheng, X.Q.Zhao: J. Alloys Compds.644 (2015) 411. 10.1016/j.jallcom.2015.05.071Search in Google Scholar
[19] Q.Li, J.J.Li, G.H.Ma, X.Y.Liu, D.Pan: Mater. Des.111 (2016) 421. 10.1016/j.matdes.2016.09.026Search in Google Scholar
[20] F.Sun, Y.L.Hao, S.Nowak, T.Gloriant, P.Laheurte, F.Prima: J. Mech. Behav. Biomed. Mater.4 (2011) 1864. 22098885 10.1016/j.jmbbm.2011.06.003Search in Google Scholar PubMed
[21] A.H.Hussein, M.A.H.Gepreel, M.K.Gouda, A.M.Hefnawy, S.H.Kandil: Mater. Sci. Eng. C61 (2016) 574. 26838885 10.1016/j.msec.2015.12.071Search in Google Scholar PubMed
[22] E.L.Paulo, R.J.Moraes, E.S.N.Contieri, A.R.Lopes, C.Rubens: Mater. Charact.96 (2014) 273. 10.1016/j.matchar.2014.08.014Search in Google Scholar
[23] L.Nie, Y.Z.Zhan, T.Hu, X.X.Chen, C.H.Wang: J. Mech. Behav. Biomed. Mater.29 (2014) 1. 24036526 10.1016/j.jmbbm.2013.08.019Search in Google Scholar PubMed
[24] L.Slokar, T.Matković, P.Matković: Mater. Des.33 (2012) 26. 10.1016/j.matdes.2011.06.052Search in Google Scholar
[25] I.V.Okulov, A.S.Volegov, H.Attar, M.Bönisch, S.Ehtemam-Haghighi, M.Calin, J.Eckert: J. Mech. Behav. Biomed. Mater.65 (2017) 866. 27810733 10.1016/j.jmbbm.2016.10.013Search in Google Scholar PubMed
[26] P.Jetty, S.Jayaram, J.Veinot, M.Pratt: J. Vasc. Surg.58 (2013) 1388. 23611713 10.1016/j.jvs.2013.01.041Search in Google Scholar PubMed
[27] A.Takeuchi, A.Inoue: Mater. Trans.46 (2005) 2817. 10.2320/matertrans.46.2817Search in Google Scholar
[28] Y.H.Hon, J.Y.Wang, Y.N.Pang: Mater. Trans.44 (2003) 2384. 10.2320/matertrans.44.2384Search in Google Scholar
[29] M.Niinomi, T.Hattori, K.Morikawa, T.Kasuga, A.Suzuki, H.Fukui, S.Niwa: Mater. Trans.43 (2002) 2970. 10.2320/matertrans.43.2970Search in Google Scholar
[30] S.Ozan, J.Lin, Y.Li, R.Ipek, C.Wen: Acta Biomater, 20 (2015) 176. 25818950 10.1016/j.actbio.2015.03.023Search in Google Scholar PubMed
[31] P.Y.Li: Mater. Res. Express, 4 (2017) 086505. 10.1088/2053-1591/aa80fcSearch in Google Scholar
[32] Z.P.Wang, in: J.Chen, W.Yan, Q.X.Liu (Eds.), Material research method, Chemical Industry Press, Beijing, China (2011) 16.Search in Google Scholar
[33] P.Y.Li, S.D.Li, Z.J.Tian, Z.G.Huang, F.M.Zhang, Y.W.Du: J. Alloys Compd.478 (2009) 193. 10.1016/j.jallcom.2008.11.117Search in Google Scholar
[34] Y.Li, C.Yang, H.Zhao, S.Qu, X.Li, Y.Li: Materials7 (2014) 1709. 28788539 10.3390/ma7031709Search in Google Scholar PubMed PubMed Central
[35] G.Welsch, R.Boyer, E.Collings: Materials Properties Handbook: Titanium Alloys, Forth ed.ASM international, Ohio, 1993.Search in Google Scholar
[36] Y.Ren, F.Wang, S.Wang, C.Tan, X.Yu, J.Jiang, H.Cai: Mater. Sci. Eng. A562 (2013) 137. 10.1016/j.msea.2012.10.098Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dynamic fragmentation and spheroidization of α phase grains during hot deformation of Ti-6Al-4V alloy
- Formation and characterization of hot tearing in AZ series alloys
- The effect of quench-aging on the mechanical properties of Zn-27Al-1Cu alloy
- Microstructural and mechanical properties of novel β-type Ti–Nb–Ni alloys containing a second phase
- Microstructure evolution mechanisms of undercooled Ni80Cu20 alloys
- Microstructures and tensile properties of CuZrAlNb metallic glass composites under different cooling rates
- Influence of a rare-earth element on the solidification behaviour and mechanical properties of undercooled Al–Si alloys
- Microstructure of aluminide coatings on Ti6Al4V alloy produced by the slurry method with inorganic binder
- Ultrathin SnO2 nanorod/reduced graphene oxide nanosheet composites for electrochemical supercapacitor applications with excellent cyclic stability
- Combustion synthesis and formation mechanism of silver nanoparticles
- Phase relationship of the Ag–Zr–Cr system at 1000 and 750°C
- Thermal properties of carbonized composite materials based on carbon filled elastomeric matrices
- Short Communications
- Surface morphology and phase stability of titanium irradiated with 168 MeV 136Xe ions
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dynamic fragmentation and spheroidization of α phase grains during hot deformation of Ti-6Al-4V alloy
- Formation and characterization of hot tearing in AZ series alloys
- The effect of quench-aging on the mechanical properties of Zn-27Al-1Cu alloy
- Microstructural and mechanical properties of novel β-type Ti–Nb–Ni alloys containing a second phase
- Microstructure evolution mechanisms of undercooled Ni80Cu20 alloys
- Microstructures and tensile properties of CuZrAlNb metallic glass composites under different cooling rates
- Influence of a rare-earth element on the solidification behaviour and mechanical properties of undercooled Al–Si alloys
- Microstructure of aluminide coatings on Ti6Al4V alloy produced by the slurry method with inorganic binder
- Ultrathin SnO2 nanorod/reduced graphene oxide nanosheet composites for electrochemical supercapacitor applications with excellent cyclic stability
- Combustion synthesis and formation mechanism of silver nanoparticles
- Phase relationship of the Ag–Zr–Cr system at 1000 and 750°C
- Thermal properties of carbonized composite materials based on carbon filled elastomeric matrices
- Short Communications
- Surface morphology and phase stability of titanium irradiated with 168 MeV 136Xe ions
- DGM News
- DGM News