Home Thermal properties of carbonized composite materials based on carbon filled elastomeric matrices
Article
Licensed
Unlicensed Requires Authentication

Thermal properties of carbonized composite materials based on carbon filled elastomeric matrices

  • Andrey A. Stepashkin , Dilyus I. Chukov , Mikhail Yu. Zadorozhnyy , Sergey D. Kaloshkin , Ivan S. Pyatov and Magomed Ya. Deniev
Published/Copyright: July 27, 2018
Become an author with De Gruyter Brill

Abstract

The paper presents the results of thermal studies of carbonized composites based on carbon filled nitrile-butadiene rubber. It was shown that carbon fibers (CF) increase the thermal conductivity of the composites and reduce their linear expansion, whereas carbon nanotubes (CNTs) practically do not change the linear expansion of the composites; instead, they effectively increase their thermal conductivity. The thermal conductivity of the composites with 25 PHR of CNTs exceeds the thermal conductivity of the composites reinforced with 25 and 50 PHR of CF. Thus, CNTs more effectively increase thermal conductivity than CF due to the appearance of additional heat transfer bridges. It was found that the composites have very high values of the storage modulus at room temperature (16–20 GPa), and it is about 4–5 GPa at 300°C, which is almost impossible for traditional polymer matrix composites.


*Correspondence address, Dr. Dilyus Chukov, Centre for composite materials, National University of Science and Technology “MISIS”, Leninskiy pr. 4, Moscow, 119049, Russia, Tel.: +7(495)6384413, E-mail:

References

[1] Y.Iwakura, K.Uno, T.Takiguchi: J. Polym. Sci.6 (1968) 33453355. 10.1002/pol.1968.150061213Search in Google Scholar

[2] DuPont. Boron trifluoride – hydrogen fluoride catalyzed synthesis of poly(aromatic ketone) and poly(aromatic sulfone) polymers. US Patent: us 3441538 (1967).Search in Google Scholar

[3] D.-J.Liaw, K.-L.Wang, Y.-C.Huang, K.-R.Lee, J.-Y.Lai, C.-S.Ha: Prog. Polym. Sci.37 (2012) 907974. 10.1016/j.progpolymsci.2012.02.005Search in Google Scholar

[4] M.Zhang, Z.Wang, L.Gao, M.Ding: J. Polym. Sci. Part Polym. Chem.44 (2006) 959967. 10.1002/pola.21204Search in Google Scholar

[5] C.P.R.Nair: Prog. Polym. Sci.29 (2004) 401498. 10.1016/j.progpolymsci.2004.01.004Search in Google Scholar

[6] T.M.Keller: J. Polym. Sci. Part Polym. Chem.26 (1988) 31993212. 10.1002/pola.1988.080261207Search in Google Scholar

[7] B.A.Bulgakov, A.V.Babkin, P.B.Dzhevakov, A.A.Bogolyubov, A.V.Sulimov, A.V.Kepman, Y.G.Kolyagin, D.V.Guseva, V.Y.Rudyak, A.V.Chertovich: Eur. Polym. J.84 (2016) 205217. 10.1016/j.eurpolymj.2016.09.013Search in Google Scholar

[8] R.J.Iredale, C.Ward, I.Hamerton: Prog. Polym. Sci.69 (2017) 121. 10.1016/j.progpolymsci.2016.12.002Search in Google Scholar

[9] A.V.Babkin, E.M.Erdni-Goryaev, A.V.Solopchenko, A.V.Kepman, V.V.Avdeev: Polym. Adv. Technol.27 (2016) 774780. 10.1002/pat.3711Search in Google Scholar

[10] A.Stepashkin, D.Chukov, S.Kaloshkin, I.Pyatov, M.Deniev: Micro Nano Lett. (2018). 10.1049/mnl.2017.0235Search in Google Scholar

[11] A.Stepashkin, D.Chukov, S.Kaloshkin, I.Pyatov, M.Deniev: Mater. Lett:215 (2018) 288291. 10.1016/j.matlet.2017.12.132Search in Google Scholar

[12] S.-S.Choi, S.-H.Ha: J. Ind. Eng. Chem.16 (2010) 238242. 10.1016/j.jiec.2010.01.052Search in Google Scholar

[13] Y.Li, Q.Wang, T.Wang, G.Pan: J. Mater. Sci.47 (2012) 730738. 10.1007/s10853-011-5846-4Search in Google Scholar

[14] B.Slay, W.Webber: Seal. Technol.2011 (2011) 912. 10.1016/S1350-4789(11)70108-8Search in Google Scholar

[15] T.V.Varghese, H. AjithKumar, S.Anitha, S.Ratheesh, R.S.Rajeev, V. LakshmanaRao: Carbon.61 (2013) 476486. 10.1016/j.carbon.2013.04.104Search in Google Scholar

[16] L.Zhu, C.S.Cheung, W.G.Zhang, Z.Huang: Fuel.158 (2015) 288292. 10.1016/j.fuel.2015.05.054Search in Google Scholar

[17] E.Fitzer, W.Frohs, M.Heine: Carbon.24 (1986) 387395. 10.1016/0008-6223(86)90257-5Search in Google Scholar

[18] Y.-H.Zhao, Y.-F.Zhang, S.-L.Bai, X.-W.Yuan: Compos. Part B Eng.94 (2016) 102108. 10.1016/j.compositesb.2016.03.056Search in Google Scholar

[19] M.A.Kader, K.Kim, Y.-S.Lee, C.Nah: J. Mater. Sci.41 (2006) 73417352. 10.1007/s10853-006-0792-2Search in Google Scholar

[20] D.Ponnamma, K.T.Varughese, M.A.A.Al-Maadeed, S.Thomas: Polym. Int.66 (2017) 931938. 10.1002/pi.5341Search in Google Scholar

[21] J.Abraham, M. ArifP, P.Xavier, S.Bose, S.C.George, N.Kalarikkal, S.Thomas: Polymer.112 (2017) 102115. 10.1016/j.polymer.2017.01.078Search in Google Scholar

[22] D.I.Chukov, A.A.Stepashkin, V.V.Tcherdyntsev, S.D.Kaloshkin, V.D.Danilov: Inorg. Mater. Appl. Res.5 (2014) 386391. 10.1134/S2075113314040194Search in Google Scholar

[23] S.Yaragalla, M.A.p., N.Kalarikkal, S.Thomas: Ind. Crops Prod.74 (2015) 792802. 10.1016/j.indcrop.2015.05.079Search in Google Scholar

[24] K.S. UshaDevi, D.Ponnamma, V.Causin, H.J.Maria, S.Thomas: Appl. Clay Sci.114 (2015) 568576. 10.1016/j.clay.2015.07.009Search in Google Scholar

[25] M.G.Thomas, E.Abraham, P.Jyotishkumar, H.J.Maria, L.A.Pothen, S.Thomas: Int. J. Biol. Macromol.81 (2015) 768777. 26318667 10.1016/j.ijbiomac.2015.08.053Search in Google Scholar PubMed

[26] G.Marković, M.Marinović-Cincović, V.Vodnik, B.Radovanović, J.Budinski-Simendić, O.Veljković: J. Therm. Anal. Calorim.97 (2009) 999. 10.1007/s10973-009-0162-9Search in Google Scholar

[27] F.Pruneda, J.J.Suñol, F.Andreu-Mateu, X.Colom: J. Therm. Anal. Calorim.80 (2005) 187190. 10.1007/s10973-005-0634-5Search in Google Scholar

[28] C.Albano, M.N.Ichazo, I.Boyer, M.Hernández, J.González, A.Karam, M.Covis: Polym. Degrad. Stab.97 (2012) 22022211. 10.1016/j.polymdegradstab.2012.08.006Search in Google Scholar

[29] A.Pappa, K.Mikedi, A.Agapiou, S.Karma, G.C.Pallis, M.Statheropoulos, M.Burke: J. Anal. Appl. Pyrolysis.92 (2011) 106110. 10.1016/j.jaap.2011.05.003Search in Google Scholar

[30] J.-T.Kim, D.-Y.Lee, T.-S.Oh, D.-H.Lee: J. Appl. Polym. Sci.89 (2003) 26332640. 10.1002/app.12169Search in Google Scholar

[31] F.Frusteri, V.Leonardi, S.Vasta, G.Restuccia: Appl. Therm. Eng.25 (2005) 16231633. 10.1016/j.applthermaleng.2004.10.007Search in Google Scholar

[32] Z.Jin, X.Chen, Y.Wang, D.Wang: Comput. Mater. Sci.102 (2015) 4550. 10.1016/j.commatsci.2015.02.019Search in Google Scholar

[33] J.Hong, J.Lee, C.K.Hong, S.E.Shim: Curr. Appl. Phys.10 (2010) 359363. 10.1016/j.cap.2009.06.028Search in Google Scholar

[34] S.-Y.Yang, C.-C.M.Ma, C.-C.Teng, Y.-W.Huang, S.-H.Liao, Y.-L.Huang, H.-W.Tien, T.-M.Lee, K.-C.Chiou: Carbon.48 (2010) 592603. 10.1016/j.carbon.2009.08.047Search in Google Scholar

[35] C.H.Liu, H.Huang, Y.Wu, S.S.Fan: Appl. Phys. Lett.84 (2004) 42484250. 10.1063/1.1756680Search in Google Scholar

[36] J.A.Barnes, I.J.Simms, G.J.Farrow, D.Jackson, G.Wostenholm, B.Yates: J. Thermoplast. Compos. Mater.3 (1990) 6680. 10.1177/089270579000300107Search in Google Scholar

[37] J.A.Barnes: J. Mater. Sci.28 (1993) 49744982. 10.1007/BF00361164Search in Google Scholar

[38] L.Z.Zhang, M.Li: Adv. Mater. Res.476–478 (2012) 705–709. 10.4028/www.scientific.net/AMR.476-478.705Search in Google Scholar

[39] J.M.Gaitonde, M.V.Lowson: Compos. Sci. Technol.40 (1991) 6985. 10.1016/0266-3538(91)90043-OSearch in Google Scholar

[40] X.Y.Shi, W.N.Bi, S.G.Zhao: J. Appl. Polym. Sci.124 (2012) 22342239. 10.1002/app.35301Search in Google Scholar

[41] J.Xu, A.Li, H.Wang, Y.Shen: Adv. Mech. Eng.8 (2016) 1687814016662561. 10.1177/1687814016662561Search in Google Scholar

[42] C.Dong, C.Yuan, L.Wang, W.Liu, X.Bai, X.Yan: Sci. Rep.6 (2016) 35023. 10.1038/srep35023Search in Google Scholar PubMed PubMed Central

Received: 2017-10-14
Accepted: 2018-02-27
Published Online: 2018-07-27
Published in Print: 2018-08-10

© 2018, Carl Hanser Verlag, München

Downloaded on 7.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111656/html
Scroll to top button