Thermal properties of carbonized composite materials based on carbon filled elastomeric matrices
-
Andrey A. Stepashkin
Abstract
The paper presents the results of thermal studies of carbonized composites based on carbon filled nitrile-butadiene rubber. It was shown that carbon fibers (CF) increase the thermal conductivity of the composites and reduce their linear expansion, whereas carbon nanotubes (CNTs) practically do not change the linear expansion of the composites; instead, they effectively increase their thermal conductivity. The thermal conductivity of the composites with 25 PHR of CNTs exceeds the thermal conductivity of the composites reinforced with 25 and 50 PHR of CF. Thus, CNTs more effectively increase thermal conductivity than CF due to the appearance of additional heat transfer bridges. It was found that the composites have very high values of the storage modulus at room temperature (16–20 GPa), and it is about 4–5 GPa at 300°C, which is almost impossible for traditional polymer matrix composites.
References
[1] Y.Iwakura, K.Uno, T.Takiguchi: J. Polym. Sci.6 (1968) 3345–3355. 10.1002/pol.1968.150061213Search in Google Scholar
[2] DuPont. Boron trifluoride – hydrogen fluoride catalyzed synthesis of poly(aromatic ketone) and poly(aromatic sulfone) polymers. US Patent: us 3441538 (1967).Search in Google Scholar
[3] D.-J.Liaw, K.-L.Wang, Y.-C.Huang, K.-R.Lee, J.-Y.Lai, C.-S.Ha: Prog. Polym. Sci.37 (2012) 907–974. 10.1016/j.progpolymsci.2012.02.005Search in Google Scholar
[4] M.Zhang, Z.Wang, L.Gao, M.Ding: J. Polym. Sci. Part Polym. Chem.44 (2006) 959–967. 10.1002/pola.21204Search in Google Scholar
[5] C.P.R.Nair: Prog. Polym. Sci.29 (2004) 401–498. 10.1016/j.progpolymsci.2004.01.004Search in Google Scholar
[6] T.M.Keller: J. Polym. Sci. Part Polym. Chem.26 (1988) 3199–3212. 10.1002/pola.1988.080261207Search in Google Scholar
[7] B.A.Bulgakov, A.V.Babkin, P.B.Dzhevakov, A.A.Bogolyubov, A.V.Sulimov, A.V.Kepman, Y.G.Kolyagin, D.V.Guseva, V.Y.Rudyak, A.V.Chertovich: Eur. Polym. J.84 (2016) 205–217. 10.1016/j.eurpolymj.2016.09.013Search in Google Scholar
[8] R.J.Iredale, C.Ward, I.Hamerton: Prog. Polym. Sci.69 (2017) 1–21. 10.1016/j.progpolymsci.2016.12.002Search in Google Scholar
[9] A.V.Babkin, E.M.Erdni-Goryaev, A.V.Solopchenko, A.V.Kepman, V.V.Avdeev: Polym. Adv. Technol.27 (2016) 774–780. 10.1002/pat.3711Search in Google Scholar
[10] A.Stepashkin, D.Chukov, S.Kaloshkin, I.Pyatov, M.Deniev: Micro Nano Lett. (2018). 10.1049/mnl.2017.0235Search in Google Scholar
[11] A.Stepashkin, D.Chukov, S.Kaloshkin, I.Pyatov, M.Deniev: Mater. Lett:215 (2018) 288–291. 10.1016/j.matlet.2017.12.132Search in Google Scholar
[12] S.-S.Choi, S.-H.Ha: J. Ind. Eng. Chem.16 (2010) 238–242. 10.1016/j.jiec.2010.01.052Search in Google Scholar
[13] Y.Li, Q.Wang, T.Wang, G.Pan: J. Mater. Sci.47 (2012) 730–738. 10.1007/s10853-011-5846-4Search in Google Scholar
[14] B.Slay, W.Webber: Seal. Technol.2011 (2011) 9–12. 10.1016/S1350-4789(11)70108-8Search in Google Scholar
[15] T.V.Varghese, H. AjithKumar, S.Anitha, S.Ratheesh, R.S.Rajeev, V. LakshmanaRao: Carbon.61 (2013) 476–486. 10.1016/j.carbon.2013.04.104Search in Google Scholar
[16] L.Zhu, C.S.Cheung, W.G.Zhang, Z.Huang: Fuel.158 (2015) 288–292. 10.1016/j.fuel.2015.05.054Search in Google Scholar
[17] E.Fitzer, W.Frohs, M.Heine: Carbon.24 (1986) 387–395. 10.1016/0008-6223(86)90257-5Search in Google Scholar
[18] Y.-H.Zhao, Y.-F.Zhang, S.-L.Bai, X.-W.Yuan: Compos. Part B Eng.94 (2016) 102–108. 10.1016/j.compositesb.2016.03.056Search in Google Scholar
[19] M.A.Kader, K.Kim, Y.-S.Lee, C.Nah: J. Mater. Sci.41 (2006) 7341–7352. 10.1007/s10853-006-0792-2Search in Google Scholar
[20] D.Ponnamma, K.T.Varughese, M.A.A.Al-Maadeed, S.Thomas: Polym. Int.66 (2017) 931–938. 10.1002/pi.5341Search in Google Scholar
[21] J.Abraham, M. ArifP, P.Xavier, S.Bose, S.C.George, N.Kalarikkal, S.Thomas: Polymer.112 (2017) 102–115. 10.1016/j.polymer.2017.01.078Search in Google Scholar
[22] D.I.Chukov, A.A.Stepashkin, V.V.Tcherdyntsev, S.D.Kaloshkin, V.D.Danilov: Inorg. Mater. Appl. Res.5 (2014) 386–391. 10.1134/S2075113314040194Search in Google Scholar
[23] S.Yaragalla, M.A.p., N.Kalarikkal, S.Thomas: Ind. Crops Prod.74 (2015) 792–802. 10.1016/j.indcrop.2015.05.079Search in Google Scholar
[24] K.S. UshaDevi, D.Ponnamma, V.Causin, H.J.Maria, S.Thomas: Appl. Clay Sci.114 (2015) 568–576. 10.1016/j.clay.2015.07.009Search in Google Scholar
[25] M.G.Thomas, E.Abraham, P.Jyotishkumar, H.J.Maria, L.A.Pothen, S.Thomas: Int. J. Biol. Macromol.81 (2015) 768–777. 26318667 10.1016/j.ijbiomac.2015.08.053Search in Google Scholar PubMed
[26] G.Marković, M.Marinović-Cincović, V.Vodnik, B.Radovanović, J.Budinski-Simendić, O.Veljković: J. Therm. Anal. Calorim.97 (2009) 999. 10.1007/s10973-009-0162-9Search in Google Scholar
[27] F.Pruneda, J.J.Suñol, F.Andreu-Mateu, X.Colom: J. Therm. Anal. Calorim.80 (2005) 187–190. 10.1007/s10973-005-0634-5Search in Google Scholar
[28] C.Albano, M.N.Ichazo, I.Boyer, M.Hernández, J.González, A.Karam, M.Covis: Polym. Degrad. Stab.97 (2012) 2202–2211. 10.1016/j.polymdegradstab.2012.08.006Search in Google Scholar
[29] A.Pappa, K.Mikedi, A.Agapiou, S.Karma, G.C.Pallis, M.Statheropoulos, M.Burke: J. Anal. Appl. Pyrolysis.92 (2011) 106–110. 10.1016/j.jaap.2011.05.003Search in Google Scholar
[30] J.-T.Kim, D.-Y.Lee, T.-S.Oh, D.-H.Lee: J. Appl. Polym. Sci.89 (2003) 2633–2640. 10.1002/app.12169Search in Google Scholar
[31] F.Frusteri, V.Leonardi, S.Vasta, G.Restuccia: Appl. Therm. Eng.25 (2005) 1623–1633. 10.1016/j.applthermaleng.2004.10.007Search in Google Scholar
[32] Z.Jin, X.Chen, Y.Wang, D.Wang: Comput. Mater. Sci.102 (2015) 45–50. 10.1016/j.commatsci.2015.02.019Search in Google Scholar
[33] J.Hong, J.Lee, C.K.Hong, S.E.Shim: Curr. Appl. Phys.10 (2010) 359–363. 10.1016/j.cap.2009.06.028Search in Google Scholar
[34] S.-Y.Yang, C.-C.M.Ma, C.-C.Teng, Y.-W.Huang, S.-H.Liao, Y.-L.Huang, H.-W.Tien, T.-M.Lee, K.-C.Chiou: Carbon.48 (2010) 592–603. 10.1016/j.carbon.2009.08.047Search in Google Scholar
[35] C.H.Liu, H.Huang, Y.Wu, S.S.Fan: Appl. Phys. Lett.84 (2004) 4248–4250. 10.1063/1.1756680Search in Google Scholar
[36] J.A.Barnes, I.J.Simms, G.J.Farrow, D.Jackson, G.Wostenholm, B.Yates: J. Thermoplast. Compos. Mater.3 (1990) 66–80. 10.1177/089270579000300107Search in Google Scholar
[37] J.A.Barnes: J. Mater. Sci.28 (1993) 4974–4982. 10.1007/BF00361164Search in Google Scholar
[38] L.Z.Zhang, M.Li: Adv. Mater. Res.476–478 (2012) 705–709. 10.4028/www.scientific.net/AMR.476-478.705Search in Google Scholar
[39] J.M.Gaitonde, M.V.Lowson: Compos. Sci. Technol.40 (1991) 69–85. 10.1016/0266-3538(91)90043-OSearch in Google Scholar
[40] X.Y.Shi, W.N.Bi, S.G.Zhao: J. Appl. Polym. Sci.124 (2012) 2234–2239. 10.1002/app.35301Search in Google Scholar
[41] J.Xu, A.Li, H.Wang, Y.Shen: Adv. Mech. Eng.8 (2016) 1687814016662561. 10.1177/1687814016662561Search in Google Scholar
[42] C.Dong, C.Yuan, L.Wang, W.Liu, X.Bai, X.Yan: Sci. Rep.6 (2016) 35023. 10.1038/srep35023Search in Google Scholar PubMed PubMed Central
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dynamic fragmentation and spheroidization of α phase grains during hot deformation of Ti-6Al-4V alloy
- Formation and characterization of hot tearing in AZ series alloys
- The effect of quench-aging on the mechanical properties of Zn-27Al-1Cu alloy
- Microstructural and mechanical properties of novel β-type Ti–Nb–Ni alloys containing a second phase
- Microstructure evolution mechanisms of undercooled Ni80Cu20 alloys
- Microstructures and tensile properties of CuZrAlNb metallic glass composites under different cooling rates
- Influence of a rare-earth element on the solidification behaviour and mechanical properties of undercooled Al–Si alloys
- Microstructure of aluminide coatings on Ti6Al4V alloy produced by the slurry method with inorganic binder
- Ultrathin SnO2 nanorod/reduced graphene oxide nanosheet composites for electrochemical supercapacitor applications with excellent cyclic stability
- Combustion synthesis and formation mechanism of silver nanoparticles
- Phase relationship of the Ag–Zr–Cr system at 1000 and 750°C
- Thermal properties of carbonized composite materials based on carbon filled elastomeric matrices
- Short Communications
- Surface morphology and phase stability of titanium irradiated with 168 MeV 136Xe ions
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Dynamic fragmentation and spheroidization of α phase grains during hot deformation of Ti-6Al-4V alloy
- Formation and characterization of hot tearing in AZ series alloys
- The effect of quench-aging on the mechanical properties of Zn-27Al-1Cu alloy
- Microstructural and mechanical properties of novel β-type Ti–Nb–Ni alloys containing a second phase
- Microstructure evolution mechanisms of undercooled Ni80Cu20 alloys
- Microstructures and tensile properties of CuZrAlNb metallic glass composites under different cooling rates
- Influence of a rare-earth element on the solidification behaviour and mechanical properties of undercooled Al–Si alloys
- Microstructure of aluminide coatings on Ti6Al4V alloy produced by the slurry method with inorganic binder
- Ultrathin SnO2 nanorod/reduced graphene oxide nanosheet composites for electrochemical supercapacitor applications with excellent cyclic stability
- Combustion synthesis and formation mechanism of silver nanoparticles
- Phase relationship of the Ag–Zr–Cr system at 1000 and 750°C
- Thermal properties of carbonized composite materials based on carbon filled elastomeric matrices
- Short Communications
- Surface morphology and phase stability of titanium irradiated with 168 MeV 136Xe ions
- DGM News
- DGM News