Startseite Optical and magnetic properties of diluted magnetic semiconductor Zn0.95M0.05S nanorods prepared by a hydrothermal method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optical and magnetic properties of diluted magnetic semiconductor Zn0.95M0.05S nanorods prepared by a hydrothermal method

  • Wen-Hua Zhao , Zhi-Qiang Wei , Xue-Liang Zhu , Xu-Dong Zhang und Jin-Long Jiang
Veröffentlicht/Copyright: 28. April 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Pure ZnS and doped Zn0.95M0.05S (M = Cr, Ni, Co, Fe and Mn) nanorods were successfully prepared by a hydrothermal method. The effects of the variety of doped elements on the crystal microstructure, morphology, optical and magnetic properties of the samples were investigated by means of X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray energy dispersive spectrometry, photoluminescence spectroscopy, UV–Visible diffuse reflectance spectroscopy and vibrating sample magnetometry. The experimental results show that all samples synthesized by this method possess single phase wurtzite structure with good crystallization, transition metal ions (M = Cr, Ni, Co, Fe and Mn) substitute for the lattice site of Zn2+ and generate single-phase Zn0.95M0.05S nanostructures. The morphologies of the samples are one-dimensional nanorods with good dispersion. The optical band gap of doped Zn0.95M0.05S decreases as the doping ion radius increases, and red shift occurs compared to undoped ZnS nanocrystals. Photoluminescence spectra exhibit clear ultraviolet emission and blue emission. Magnetic measurements indicate that the undoped and doped ZnS samples are ferromagnetic at room temperature.


*Correspondence address, Prof. Zhi-qiang Wei, State Key Laboratory of Advanced Processing and Recycling Nonferrous Metals, Lanzhou University of Technology, No. 287 Langongping Road, Qilihe District, Lanzhou Gansu 730050, P.R. China, Tel.: +86-0931-2973780, Fax: +86-0931-2976040, E-mail:

References

[1] D.Cai, X.Yuan, D.Zhu, H.Zhou, H.Li, J.Zhao: Mater. Res. Bull.94 (2017) 241. 10.1016/j.materresbull.2017.06.012Suche in Google Scholar

[2] X.Wang, Z.Chen, L.Zhang, M.Xu, G.Chen, B.Jiang, C.Ke, L.Zhang, Y.Hang: J. Alloys Compd.695 (2017) 3767. 10.1016/j.jallcom.2016.11.145Suche in Google Scholar

[3] Z.Dehghani, Z.Shadrokh, M.Nadafan: Opt. – Int. J. Light Electron Opt.131 (2017) 925. 10.1016/j.ijleo.2016.12.021Suche in Google Scholar

[4] D.R.Khanal, J.W.L.Yim, W.Walukiewicz, J.Wu: Nano Lett.7 (2007) 1186. 10.1021/nl062886wSuche in Google Scholar PubMed

[5] L.Liu, L.Yang, Y.Pu, D.Xiao, J.Zhu: Mater. Lett.66 (2012) 121. 10.1016/j.matlet.2011.08.025Suche in Google Scholar

[6] S.Kumar, N.K.Verma: J. Mater. Sci. Mater. Electron.25 (2014) 785. 10.1007/s10854-013-1646-8Suche in Google Scholar

[7] D.Saikia, R.Raland, J.P.Borah: Phys. E Low-Dimens. Syst. Nanostructures.83 (2016) 56. 10.1016/j.physe.2016.04.016Suche in Google Scholar

[8] B.Poornaprakash, S.Ramu, S.-H.Park, R.P.Vijayalakshmi, B.K.Reddy: Mater. Lett.164 (2016) 104. 10.1016/j.matlet.2015.10.119Suche in Google Scholar

[9] W.-S.Ni, Y.-J.Lin: J. Alloys Compd.649 (2015) 968. 10.1016/j.jallcom.2015.07.190Suche in Google Scholar

[10] B.Pejjai, V.R.Minnam Reddy, K.Seku, T.R.R.Kotte, C.Park: Opt. – Int. J. Light Electron Opt.130 (2017) 608. 10.1016/j.ijleo.2016.10.083Suche in Google Scholar

[11] W.Zhao, Z.Wei, L.Zhang, X.Wu, X.Wang, J.Jiang: J. Nanomater.2017 (2017) 1. 10.1155/2017/9378349Suche in Google Scholar

[12] N.Bansal, G.C.Mohanta, K.Singh: Ceram. Int.43 (2017) 7193. 10.1016/j.ceramint.2017.03.007Suche in Google Scholar

[13] S.S.Talwatkar, A.L.Sunatkari, Y.S.Tamgadge, V.G.Pahurkar, G.G.Muley: Appl. Phys. A.118 (2015) 675. 10.1007/s00339-014-8777-5Suche in Google Scholar

[14] E.J.Mittemeijer, U.Welzel: Z. Für Krist.223 (2008) 552. 10.1524/zkri.2008.1213Suche in Google Scholar

[15] A.Khorsand Zak, W.H. Abd.Majid, M.E.Abrishami, R.Yousefi: Solid State Sci.13 (2011) 251. 10.1016/j.solidstatesciences.2010.11.024Suche in Google Scholar

[16] S.P.Patel, J.C.Pivin, M.Patel, J.Won, R.Chandra, D.Kanjilal, L.Kumar: J. Magn. Magn. Mater.324 (2012) 2136. 10.1016/j.jmmm.2012.02.031Suche in Google Scholar

[17] L.-J.Tang, G.-F.Huang, Y.Tian, W.-Q.Huang, M.-G.Xia, C.Jiao, J.-P.Long, S.-Q.Zhan: Mater. Lett.100 (2013) 237. 10.1016/j.matlet.2013.03.036Suche in Google Scholar

[18] G.H.Yue, P.X.Yan, D.Yan, J.Z.Liu, D.M.Qu, Q.Yang, X.Y.Fan: J. Cryst. Growth.293 (2006) 428. 10.1016/j.jcrysgro.2006.05.053Suche in Google Scholar

[19] Z.Deng, J.Qi, Y.Zhang, Q.Liao, Y.Huang: Nanotechnology18 (2007) 475603. 10.1088/0957-4484/18/47/475603Suche in Google Scholar

[20] S.Kar, S.Chaudhuri: Chem. Phys. Lett.414 (2005) 40. 10.1016/j.cplett.2005.08.021Suche in Google Scholar

[21] Y.-C.Zhu, Y.Bando, D.-F.Xue: Appl. Phys. Lett.82 (2003) 1769. 10.1063/1.1562339Suche in Google Scholar

[22] B.Poornaprakash, D.Amaranatha Reddy, G.Murali, N.Madhusudhana Rao, R.P.Vijayalakshmi, B.K.Reddy: J. Alloys Compd.577 (2013) 79. 10.1016/j.jallcom.2013.04.106Suche in Google Scholar

[23] S.Sambasivam, D.Paul Joseph, J.G.Lin, C.Venkateswaran: J. Solid State Chem.182 (2009) 2598. 10.1016/j.jssc.2009.07.015Suche in Google Scholar

[24] D.Gao, G.Yang, J.Zhang, Z.Zhu, M.Si, D.Xue: Appl. Phys. Lett.99 (2011) 52502. 10.1063/1.3622303Suche in Google Scholar

[25] M.P.F.de Godoy, A.Mesquita, W.Avansi, P.P.Neves, V.A.Chitta, W.B.Ferraz, M.A.Boselli, A.C.S.Sabioni, H.B.de Carvalho: J. Alloys Compd.555 (2013) 315. 10.1016/j.jallcom.2012.11.105Suche in Google Scholar

[26] G.Srinet, P.Varshney, R.Kumar, V.Sajal, P.K.Kulriya, M.Knobel, S.K.Sharma: Ceram. Int.39 (2013) 6077. 10.1016/j.ceramint.2013.01.025Suche in Google Scholar

Received: 2017-08-18
Accepted: 2017-12-18
Published Online: 2018-04-28
Published in Print: 2018-05-15

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Original Contributions
  4. Manufacturing of functionally graded metal matrix composite materials by segregation
  5. Indenter size effect in high-pressure torsion deformed Pd-based metallic glass
  6. Investigation of the effect of bath temperature on the bath–freeze lining interface temperature in the CuOx–FeOy–MgO–SiO2 system at copper metal saturation
  7. Decomposition of Al4O4C in the presence of C at high temperatures in vacuum
  8. Optical and magnetic properties of diluted magnetic semiconductor Zn0.95M0.05S nanorods prepared by a hydrothermal method
  9. Structural, magnetic and optical properties of Al-substituted nickel ferrite nanoparticles
  10. Effect of processing parameters on microstructural and mechanical properties of aluminum–SiO2 nanocomposites produced by spark plasma sintering
  11. Sn-bonded LaFe11.6Si1.4Hy magnetocaloric composites with a 3-d Ni-coating steel substrate formed by hot-pressing
  12. Effect of laser energy density on microstructures and mechanical properties of selective laser melted Ti-6Al-4V alloy
  13. Structure and corrosion resistance of titanium oxide layers produced on NiTi alloy in low-temperature plasma
  14. Severe shot peening of AISI 321 with 1 000 % and 1 300 % coverages: A comparative study on the surface nanocrystallization, phase transformation, sub-surface microcracks, and microhardness
  15. Abrasive wear resistance of modified X37CrMoV5-1 hot work tool steel after conventional and laser heat treatment
  16. Effect of coupled annular electromagnetic stirring and intercooling on the microstructures, macrosegregation and properties of large-sized 2219 aluminum alloy billets
  17. People
  18. Otmar Vöhringer on the occasion of his 80th birthday
  19. In Memory of Lasar Simhovich Shvindlerman (September 20th, 1935–March 3rd, 2018)
  20. In Memory of Prof. Dr.-Ing. Heinrich Wollenberger
  21. DGM News
  22. DGM News
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111626/html
Button zum nach oben scrollen