Severe shot peening of AISI 321 with 1 000 % and 1 300 % coverages: A comparative study on the surface nanocrystallization, phase transformation, sub-surface microcracks, and microhardness
-
Sadegh Pour-Ali
, Ali-Reza Kiani-Rashid , Abolfazl Babakhani and Sannakaisa Virtanen
Abstract
In this study, AISI 321 austenitic stainless steel samples were surface treated using severe shot peening (SSP) with 1 000 % and 1 300 % coverages. Microstructural features including the grain size, phase transformation, and formation of sub-surface microcracks were investigated at the rough top surface and about 40 μm depth (top surface after grinding and removal of initial rough surface layer created by SSP). In addition, microhardness variations were thoroughly analyzed in-depth. Experimental results demonstrated that for both 1 000 % and 1 300 % coverages, the microstructures of top surface and 40 μm depth are respectively composed of equiaxed nano-grains and lamella-shaped cells; however, enhanced imparted strain in the case of 1 300 % coverage leads to the formation of considerable amounts of strain-induced martensite (α′) phase in the surface layers and consequently, due to strength increase and lack of deformability, some microcracks are created in the sub-surface layers (up to 20 μm depth).
References
[1] M.A.Meyers, A.Mishra, D.J.Benson: Prog. Mater. Sci.51 (2006) 427–556. 10.1016/j.pmatsci.2005.08.003Search in Google Scholar
[2] C.Gu, J.Lian, J.He, Z.Jiang, Q.Jiang: Surf. Coat. Technol.200 (2006) 5413–5418. 10.1016/j.surfcoat.2005.07.001Search in Google Scholar
[3] Y.S.Zhang, Z.Han, K.Wang, K.Lu: Wear.260 (2006) 942–948. 10.1016/j.wear.2005.06.010Search in Google Scholar
[4] L.Wang, J.Li, Y.Wang, L.Zhao, Q.Jiang: Chem. Eng. J.181–182 (2012) 72–79. 10.1016/j.cej.2011.10.088Search in Google Scholar
[5] C.Suryanarayana: Bull. Mater. Sci.17 (1994) 307–346. 10.1007/BF02745220Search in Google Scholar
[6] Y.Wang, X.Liao, Y.Zhu: Int. J. Mater. Res.100 (2009) 1632–1637. 10.3139/146.110230Search in Google Scholar
[7] M.T.Swihart: Curr. Opin. Colloid Interface Sci.8 (2003) 127–133. 10.1016/S1359-0294(03)00007-4Search in Google Scholar
[8] M.L.Trudeau: Nanophase Mater. Synth. Prop. Appl., Springer Netherlands, Dordrecht, 1994: pp. 153–156. 10.1007/978-94-011-1076-1_21Search in Google Scholar
[9] M.Hafezi, A.Nadernezhad, M.Mohammadi, H.Barzegar, H.Mohammadi: Int. J. Mater. Res.105 (2014) 469–473. 10.3139/146.111048Search in Google Scholar
[10] Q.Li, H.Lu, J.Cui, M.An, D.Li: Surf. Coat. Technol.304 (2016) 567–573. 10.1016/j.surfcoat.2016.07.056Search in Google Scholar
[11] B.Altan: Severe plastic deformation: toward bulk production of nanostructured materials, Nova Publishers, 2006.Search in Google Scholar
[12] S.Pour-Ali, A.Kiani-Rashid, A.Babakhani: Int. J. Mater. Res.107 (2016) 1031–1040. 10.3139/146.111432Search in Google Scholar
[13] S.Pour-Ali, A.-R.Kiani-Rashid, A.Babakhani: Vacuum.144 (2017) 152–159. 10.1016/j.vacuum.2017.07.016Search in Google Scholar
[14] S.Pour-Ali, A.-R.Kiani-Rashid, A.Babakhani, S.Virtanen: Vacuum.146 (2017). 297–303. 10.1016/j.vacuum.2017.09.053Search in Google Scholar
[15] T.Roland, D.Retraint, K.Lu, J.Lu: Scr. Mater.54 (2006) 1949–1954. 10.1016/j.scriptamat.2006.01.049Search in Google Scholar
[16] A.L.Ortiz, J.-W.Tian, L.L.Shaw, P.K.Liaw: Scr. Mater.62 (2010) 129–132. 10.1016/j.scriptamat.2009.10.015Search in Google Scholar
[17] V.Demers, V.Brailovski, S.D.Prokoshkin, K.E.Inaekyan: J. Mater. Process. Technol.209 (2009) 3096–3105. 10.1016/j.jmatprotec.2008.07.016Search in Google Scholar
[18] B.N.Mordyuk, O.P.Karasevskaya, G.I.Prokopenko, N.I.Khripta: Surf. Coat. Technol.210 (2012) 54–61. 10.1016/j.surfcoat.2012.08.063Search in Google Scholar
[19] B.N.Mordyuk, G.I.Prokopenko, M.A.Vasylyev, M.O.Iefimov: Mater. Sci. Eng. A458 (2007) 253–261. 10.1016/j.msea.2006.12.049Search in Google Scholar
[20] S.Pour-Ali, A.-R.Kiani-Rashid, A.Babakhani, A.Davoodi: Appl. Surf. Sci.376 (2016) 121–132. 10.1016/j.apsusc.2016.03.131Search in Google Scholar
[21] Y.Todaka, M.Umemoto, S.Tanaka, K.Tsuchiya: Mater. Trans.45 (2004) 2209–2213. 10.2320/matertrans.45.2209Search in Google Scholar
[22] I.Altenberger, E.A.Stach, G.Liu, R.K.Nalla, R.O.Ritchie: Scr. Mater.48 (2003) 1593–1598. 10.1016/S1359-6462(03)00143-XSearch in Google Scholar
[23] S.Bagherifard, I.Fernandez-Pariente, R.Ghelichi, M.Guagliano: Int. J. Fatigue.65 (2014) 64–70. 10.1016/j.ijfatigue.2013.08.022Search in Google Scholar
[24] K.S.Raja, S.A.Namjoshi, M.Misra: Mater. Lett.59 (2005) 570–574. 10.1016/j.matlet.2004.10.047Search in Google Scholar
[25] G.Ma, B.Xu, H.Wang, H.Si, D.Yang: Mater. Lett.65 (2011) 1268–1271. 10.1016/j.matlet.2011.01.041Search in Google Scholar
[26] S.M.Hassani-Gangaraj, K.S.Cho, H.-J.L.Voigt, M.Guagliano, C.A.Schuh: Acta Mater.97 (2015) 105–115. 10.1016/j.actamat.2015.06.054Search in Google Scholar
[27] L.Wagner: Shot peening, John Wiley & Sons, 2003. 10.1002/3527606580Search in Google Scholar
[28] S.M.Hassani-Gangaraj, A.Moridi, M.Guagliano: in: IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, 2014: p. 12038. 10.1088/1757-899X/63/1/012038Search in Google Scholar
[29] S.Pour-Ali, A.-R.Kiani-Rashid, A.Babakhani, S.Virtanen, M.Allieta: Surf. Coat. Technol. (In press). 10.1016/j.surfcoat.2017.11.062Search in Google Scholar
[30] Y.Todaka, M.Umemoto, K.Tsuchiya: Mater. Trans.45 (2004) 376–379. 10.2320/matertrans.45.376Search in Google Scholar
[31] R.Fathallah, A.Laamouri, H.Sidhom, C.Braham: Int. J. Fatigue.26 (2004) 1053–1067. 10.1016/j.ijfatigue.2004.03.007Search in Google Scholar
[32] G.I.Mylonas, G.Labeas: Surf. Coat. Technol.205 (2011) 4480–4494. 10.1016/j.surfcoat.2011.03.080Search in Google Scholar
[33] S.Bagherifard, R.Ghelichi, M.Guagliano: Appl. Surf. Sci.259 (2012) 186–194. 10.1016/j.apsusc.2012.07.017Search in Google Scholar
[34] E.J.Mittemeijer, U.Welzel: Modern diffraction methods, John Wiley & Sons, 2013. 2360036410.1002/9783527649884Search in Google Scholar
[35] E.J.Mittemeijer, U.Welzel: Zeitschrift Für Krist. Int. J. Struct. Phys. Chem. Asp. Cryst. Mater.223 (2008) 552–560. 10.1524/zkri.2008.1213Search in Google Scholar
[36] A.C.Larson: R.B. V Dreele, Los Alamos National Laboratory Report No. LAUR, 2004, Vol. 86, CrystEngComm. (n.d.) 748.Search in Google Scholar
[37] EN ISO 4287, (1998) 1–65.Search in Google Scholar
[38] S.M.Hassani-Gangaraj, A.Moridi, M.Guagliano, A.Ghidini: Mater. Des.55 (2014) 492–498. 10.1016/j.matdes.2013.10.015Search in Google Scholar
[39] H.Y.Miao, S.Larose, C.Perron, M.Lévesque: Adv. Eng. Softw.40 (2009) 1023–1038. 10.1016/j.advengsoft.2009.03.013Search in Google Scholar
[40] K.Dai, J.Villegas, Z.Stone, L.Shaw: Acta Mater.52 (2004) 5771–5782. 10.1016/j.actamat.2004.08.031Search in Google Scholar
[41] B.Wu, J.Zhang, L.Zhang, Y.-S.Pyoun, R.Murakami: Appl. Surf. Sci.321 (2014) 318–330. 10.1016/j.apsusc.2014.09.068Search in Google Scholar
[42] G.Liu, J.Lu, K.Lu: Mater. Sci. Eng. A286 (2000) 91–95. 10.1016/S0921-5093(00)00686-9Search in Google Scholar
[43] X.H.Chen, J.Lu, L.Lu, K.Lu: Scr. Mater.52 (2005) 1039–1044. 10.1016/j.scriptamat.2005.01.023Search in Google Scholar
[44] B.N.Mordyuk, Y.V.Milman, M.O.Iefimov, G.I.Prokopenko, V.V.Silberschmidt, M.I.Danylenko, A.V. Kotko: Surf. Coatings Technol.202 (2008) 4875–4883. 10.1016/j.surfcoat.2008.04.080Search in Google Scholar
[45] M.A.Vasylyev, B.N.Mordyuk, S.I.Sidorenko, S.M.Voloshko, A.P.Burmak: Surf. Coatings Technol. (2017). 10.1016/j.surfcoat.2017.11.019Search in Google Scholar
[46] A.Ghasemi, S.M.Hassani-Gangaraj, A.H.Mahmoudi, G.H.Farrahi, M.Guagliano: Surf. Eng.32 (2016) 861–870. 10.1080/02670844.2016.1192336Search in Google Scholar
[47] R.E.Schramm, R.P.Reed: Metall. Trans. A6 (1975) 1345. 10.1007/BF02641927Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Manufacturing of functionally graded metal matrix composite materials by segregation
- Indenter size effect in high-pressure torsion deformed Pd-based metallic glass
- Investigation of the effect of bath temperature on the bath–freeze lining interface temperature in the CuOx–FeOy–MgO–SiO2 system at copper metal saturation
- Decomposition of Al4O4C in the presence of C at high temperatures in vacuum
- Optical and magnetic properties of diluted magnetic semiconductor Zn0.95M0.05S nanorods prepared by a hydrothermal method
- Structural, magnetic and optical properties of Al-substituted nickel ferrite nanoparticles
- Effect of processing parameters on microstructural and mechanical properties of aluminum–SiO2 nanocomposites produced by spark plasma sintering
- Sn-bonded LaFe11.6Si1.4Hy magnetocaloric composites with a 3-d Ni-coating steel substrate formed by hot-pressing
- Effect of laser energy density on microstructures and mechanical properties of selective laser melted Ti-6Al-4V alloy
- Structure and corrosion resistance of titanium oxide layers produced on NiTi alloy in low-temperature plasma
- Severe shot peening of AISI 321 with 1 000 % and 1 300 % coverages: A comparative study on the surface nanocrystallization, phase transformation, sub-surface microcracks, and microhardness
- Abrasive wear resistance of modified X37CrMoV5-1 hot work tool steel after conventional and laser heat treatment
- Effect of coupled annular electromagnetic stirring and intercooling on the microstructures, macrosegregation and properties of large-sized 2219 aluminum alloy billets
- People
- Otmar Vöhringer on the occasion of his 80th birthday
- In Memory of Lasar Simhovich Shvindlerman (September 20th, 1935–March 3rd, 2018)
- In Memory of Prof. Dr.-Ing. Heinrich Wollenberger
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Manufacturing of functionally graded metal matrix composite materials by segregation
- Indenter size effect in high-pressure torsion deformed Pd-based metallic glass
- Investigation of the effect of bath temperature on the bath–freeze lining interface temperature in the CuOx–FeOy–MgO–SiO2 system at copper metal saturation
- Decomposition of Al4O4C in the presence of C at high temperatures in vacuum
- Optical and magnetic properties of diluted magnetic semiconductor Zn0.95M0.05S nanorods prepared by a hydrothermal method
- Structural, magnetic and optical properties of Al-substituted nickel ferrite nanoparticles
- Effect of processing parameters on microstructural and mechanical properties of aluminum–SiO2 nanocomposites produced by spark plasma sintering
- Sn-bonded LaFe11.6Si1.4Hy magnetocaloric composites with a 3-d Ni-coating steel substrate formed by hot-pressing
- Effect of laser energy density on microstructures and mechanical properties of selective laser melted Ti-6Al-4V alloy
- Structure and corrosion resistance of titanium oxide layers produced on NiTi alloy in low-temperature plasma
- Severe shot peening of AISI 321 with 1 000 % and 1 300 % coverages: A comparative study on the surface nanocrystallization, phase transformation, sub-surface microcracks, and microhardness
- Abrasive wear resistance of modified X37CrMoV5-1 hot work tool steel after conventional and laser heat treatment
- Effect of coupled annular electromagnetic stirring and intercooling on the microstructures, macrosegregation and properties of large-sized 2219 aluminum alloy billets
- People
- Otmar Vöhringer on the occasion of his 80th birthday
- In Memory of Lasar Simhovich Shvindlerman (September 20th, 1935–March 3rd, 2018)
- In Memory of Prof. Dr.-Ing. Heinrich Wollenberger
- DGM News
- DGM News