Startseite Modelling analysis and experiments of polycrystalline silicon directional solidification in an annular heating field
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modelling analysis and experiments of polycrystalline silicon directional solidification in an annular heating field

  • Xuli Zhu , Long Xu , Jinmei Huang und Hongqiong Wu
Veröffentlicht/Copyright: 25. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

As a solution to the low convection strength of the Bridgman method and the convection control difficulties of the electromagnetic induction melting method, a novel, large directional solidification device with annular heaters arranged above the crucible is designed. The inhomogeneous heating field causes differences in melt density, intensifies controllable natural convection and accelerates the moving of impurities from the solid–liquid interface to the surface of the melt, thereby improving purification efficiency and reducing energy consumption. Although the temperature field is inhomogeneous, vertical crystal growth can still be achieved. Mathematical analytic modelling is used to explain the principle, and the feasibility is verified by experiments. The results show that high-quality and large bulk silicon ingot (1 m × 1 m × 0.45 m) can be produced at an average solidification rate of 3.68 μm s−1.


*Correspondence address, Dr. Xuli Zhu, Department of mechanical and automation engineering, Xiamen City University, No. 1263, Qianpu Road, Xiamen, Fujian 361000, P. R. China, Tel.: +86-592-5909062, E-mail:

References

[1] J.E.Su, D.Park, T.U.Yu, B.M.Moon: IEEE. Phot. Spec. Conf. (2012) 002712. 10.1109/PVSC.2012.6318153Suche in Google Scholar

[2] Z.Li, L.Liu, X.Liu, Y.Zhang, J.Xiong: J. Cryst. Growth.385 (2014) 9. 10.1016/j.jcrysgro.2013.01.053Suche in Google Scholar

[3] T.Y.Wang, S.L.Hsu, C.C.Fei, K.M.Yei, W.C.Hsu, C.W.Lan: J. Cryst. Growth.311 (2009) 263. 10.1016/j.jcrysgro.2008.10.064Suche in Google Scholar

[4] T.F.Li, H.C.Huang, H.W.Tsai, A.Lan, C.Chuck, C.W.Lan: J. Cryst. Growth.340 (2012) 202. 10.1016/j.jcrysgro.2011.12.045Suche in Google Scholar

[5] Ch.Kudla, A.T.Blumenau, F.Büllesfeld, N.Dropka, Ch.Frank-Rotsch, F.Kiessling, O.Klein, P.Lange, W.Miller, U.Rehse, U.Sahr, M.Schellhorn, G.Weidemann, M.Ziem: J. Cryst. Growth.365 (2013) 54. 10.1016/j.jcrysgro.2012.11.049Suche in Google Scholar

[6] F.Huang, R.Chen, J.Guo, H.Ding, Y.Su, J.Yang, H.Fu: Mat. Sci. Semicon. Proc.15 (2012) 380. 10.1016/j.mssp.2011.12.006Suche in Google Scholar

[7] F.M.Kiessling, F.Büllesfeld, N.Dropka, C.Frank-Rotsch, M.Müller, P.Rudolph: J. Cryst. Growth.360 (2012) 81. 10.1016/j.jcrysgro.2012.03.017Suche in Google Scholar

[8] K.Nakajima, K.Morishita, R.Murai, K.Kutsukake: J. Cryst. Growth.355 (2012) 38. 10.1016/j.jcrysgro.2012.06.034Suche in Google Scholar

[9] D.Zhu, L.Ming, M.Huang, Z.Zhang, X.Huang: J. Cryst. Growth.386 (2014) 52. 10.1016/j.jcrysgro.2013.09.051Suche in Google Scholar

[10] T.F.Li, K.M.Yeh, W.C.Hsu, C.W.Lan: J. Cryst. Growth.318 (2011) 219. 10.1016/j.jcrysgro.2010.10.090Suche in Google Scholar

[11] C.C.Hsieh, A.Lan, C.Hsu, C.W.Lan: J. Cryst. Growth.401 (2014) 727. 10.1016/j.jcrysgro.2014.01.045Suche in Google Scholar

[12] J.W.Shur, B.K.Kang, S.J.Moon, W.W.So, D.H.Yoon: Sol. Energ. Mat. Sol. C.95 (2011) 3159.10.1016/j.solmat.2011.04.020Suche in Google Scholar

[13] T.Liu, Z.Dong, Y.Zhao, J.Wang, T.Chen, H.Xie, J.Li, H.Ni, D.Huo: J. Cryst. Growth.355 (2012) 145. 10.1016/j.jcrysgro.2012.06.037Suche in Google Scholar

[14] L.Chen, B.Dai: J. Cryst. Growth.354 (2012) 86. 10.1016/j.jcrysgro.2012.06.010Suche in Google Scholar

[15] E.Schmid, S.Würzner, C.Funke, V.Galindo, O.Pätzold, M.Stelter: J. Cryst. Growth.359 (2012) 77. 10.1016/j.jcrysgro.2012.08.028Suche in Google Scholar

Received: 2017-03-24
Accepted: 2017-08-08
Published Online: 2017-11-25
Published in Print: 2017-12-08

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111564/pdf?lang=de
Button zum nach oben scrollen