Startseite Effect of flow, heat transfer and magnetic energy on the grain refinement of 7A04 alloy under electromagnetic pulse
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of flow, heat transfer and magnetic energy on the grain refinement of 7A04 alloy under electromagnetic pulse

  • Qingwei Bai , Yonglin Ma , Shuqing Xing , Xinyu Bao , Yanfei Feng , Wenxia Yu und Xiaolan Kang
Veröffentlicht/Copyright: 25. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, a transient numerical simulation method was used to analyze the direct chill casting process of 7A04 alloy under electromagnetic pulse treatment. The distribution and evolution of the electromagnetic force, fluid and thermal fields were studied to determine their effect on the solidification characteristics of alloy ingots. A modified nucleation theory for the refinement of grain size was presented considering the effect of electromagnetic energy on the critical Gibbs free energy ΔG* of the unity, which was verified by the corresponding experiments. The results showed that the swirl rings of the axial section in the melt were restrained and a lower temperature gradient was formed in the radial section when the magnetic flux intensity was increased. Under these conditions for nucleation, the grain refinement could be explained by the electromagnetic pulse energy that reduced the energy barrier and improved the nucleation rate, either heterogeneous nucleation or homogeneous nucleation.


*Correspondence address, Prof. Yonglin Ma, School of Material and Metallurgy, Inner Mongolia University of Science & Technology, No. 7 Arding Street, Baotou, ZIP: 014010, P. R. China, Tel.: +8615947629690, E-mail:

First author's contact details, Qingwei Bai, Ph. D. candidate, E-mail:


References

[1] Y.Q.Wang, Z.X.Wang, X.G.Hu, J.K.Han, H.J.Xing: Thin-Wall. Struct.108 (2016) 305. 10.1016/j.tws.2016.08.029Suche in Google Scholar

[2] J.W.Yeh, S.H.Jong, W.P.Liu: Metall. Mater. Trans. A.27 (1996) 1933. 10.1007/BF02651943Suche in Google Scholar

[3] J.Z.Wang, J.G.Qi, H.L.Du, Z.B.Zhang: J. Iron Steel Res. Int.14 (2007) 75. 10.1016/S1006-706X(07)60015-6Suche in Google Scholar

[4] M.J.Li, T.Tamura, N.Omura, Y.Murakami, S.Tada: J. Mater. Process Tech.235 (2016) 114. 10.1016/j.jmatprotec.2016.04.024Suche in Google Scholar

[5] T.E.Quested, A.L.Greer: Acta Mater.52 (2004) 3859. 10.1016/j.actamat.2004.04.035Suche in Google Scholar

[6] Z.X.Yin, Y.Y.Gong, B.Li, Y.F.Cheng, D.Liang, Q.J.Zhai: J. Mater. Process Tech.212 (2012) 2629. 10.1016/j.jmatprotec.2012.07.013Suche in Google Scholar

[7] Z.N.Getselev: JOM.23 (1971) 38. 10.1007/BF03355734Suche in Google Scholar

[8] J.Ma, J.Li, Y.Gao, Q.Zhai: Mater. Lett.63 (2009) 142. 10.1016/j.matlet.2008.09.036Suche in Google Scholar

[9] Y.Y.Gong, J.Luo, J.X.Jing, Z.Q.Xia, Q.J.Zhai: Mater. Sci. Eng. A-Struct.497 (2008) 147. 10.1016/j.msea.2008.06.027Suche in Google Scholar

[10] R.Haghayeghi, P.Kapranos: Mater. Lett.151 (2015) 38. 10.1016/j.matlet.2015.03.026Suche in Google Scholar

[11] D.Liang, Z.Y.Liang, Q.J.Zhai, G.Wang, D.H.StJohn: Mater. Lett.130 (2014) 48. 10.1016/j.matlet.2014.05.058Suche in Google Scholar

[12] A.Hellawell, S.Liu, S.Z.Lu: JOM.49 (1997) 18. 10.1007/BF02914650Suche in Google Scholar

[13] B.Wang, Y.S.Yang, M.L.Sun: Trans. Nonferrous Met. Soc. China.20 (2010) 1685. 10.1016/S1003-6326(09)60358-7Suche in Google Scholar

[14] J.Li, J.Ma, Y.Gao, Q.Zhai: Mater. Sci. Eng. A-Struct.490 (2008) 452. 10.1016/j.msea.2008.01.052Suche in Google Scholar

[15] D.Turnbull, J.C.Fisher: J. Chem. Phys.17 (1949) 71. 10.1063/1.1747055Suche in Google Scholar

[16] M.O.Tang, J.Xu, Z.F.Zhang, Y.L.Bai: Trans. Nonferrous Met. Soc. China.20 (2010) 1591. 10.1016/S1003-6326(09)60344-7Suche in Google Scholar

[17] X.Dong, G.Mi, L.He, P.Li: J. Mater. Process Tech.213 (2013) 1426. 10.1016/j.jmatprotec.2013.03.006Suche in Google Scholar

[18] Q.C.Le, S.J.Guo, Z.H.Zhao, J.Z.Cui, X.J.Zhang: J. Mater. Process Technol.183 (2007) 194. 10.1016/j.jmatprotec.2006.10.009Suche in Google Scholar

[19] B.G.Thomas, L.J.Mika, F.M.Najjar: Metall. Mater. Trans. B21 (1990) 387. 10.1007/BF02664206Suche in Google Scholar

[20] L.Pan, D.F.Tao, W.He, B.P.Gu: Journal of Zhejiang University (Engineering Science).50 (2016) 625. 10.3785/j.issn.1008-973X.2016.04.005Suche in Google Scholar

[21] Q.Zhang, J.Z.Cui, G.M.Lu, B.J.Zhang: Mater. Rev.16 (2002) 61.Suche in Google Scholar

[22] G.Reinhart, A.Buffet, H.Nguyen-Thi, B.Billia, H.Jung, N.Mangelinck-Noël, N.Bergeon, T.Schenk, J.Härtwig, J.Baruchel: Metall. Mater. Trans. A.39 (2008) 865. 10.1007/s11661-007-9449-2Suche in Google Scholar

[23] W.M.Mao, A.M.Zhao, C.L.Cui, X.Zhong: Acta Metall. Sin.35 (1999) 971. 10.1016/S1468-6996(01)00032-8Suche in Google Scholar

[24] Y.J.Li, W.Z.Tao, Y.S.Yan: J. Mater. Process Tech.212 (2012) 903. 10.1016/j.jmatprotec.2011.11.018Suche in Google Scholar

[25] M.Nakada, Y.Shiohara, M.C.Flemings: ISIJ Int.30 (1990) 27. 10.1016/0956-716X(94)90465-0Suche in Google Scholar

[26] H.Fredriksson, U.Åkerlind: Materials Processing during Casting. John Wiley & Sons Ltd, England, 2006.10.1002/9780470017920Suche in Google Scholar

[27] S.Z.Lu, A.Hellawell: Metall. Mater. Trans. A18 (1987) 1721. 10.1007/BF02646204Suche in Google Scholar

[28] J.K.Choi, H.Ohtsuka, Y.Xu, W.Y.Choo: Scripta Mater.43 (2000) 221. 10.1016/S1359-6462(00)00394-8Suche in Google Scholar

[29] P.Terzieff, R.Lück: J. Alloys Compd.360 (2003) 205. 10.1016/S0925-8388(03)00347-5Suche in Google Scholar

[30] E.A.Brandes: Smithells metals reference book, sixth edition. Butterworth & Co C Publishers Ltd, New York, 1983.Suche in Google Scholar

[31] M.Gündüz, J.D.Hunt: Acta Metall.37 (1989) 1839. 10.1016/0001-6160(89)90068-0Suche in Google Scholar

Received: 2017-03-24
Accepted: 2017-08-08
Published Online: 2017-11-25
Published in Print: 2017-12-08

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111562/pdf?lang=de
Button zum nach oben scrollen