Continuous cooling transformation behavior and the kinetics of bainite formation in a bainitic–martensitic steel
-
Babak Shahriari
Abstract
The continuous cooling transformation diagram of a low carbon bainitic–martensitic steel was constructed using dilatometry and metallographic methods. It was found that as cooling rate increases, the structure changes from granular bainite to lath martensite. Three regions of different kinetic behavior were discerned for the bainitic–martensitic steel. One of the regions conformed to martensite formation and the other two comprised transformation to bainite. A non-isothermal type of Johnson–Mehl–Avrami–Kolmogorov kinetic equation of reaction rate was used to analyze the transformation behavior during continuous cooling of bainite formation. The Avrami exponent and activation energy values for different regions at cooling rates of 0.1 and 0.4 K s−1 varied from 1.5 to 4.7 and 71 to 84 kJ mol–1 respectively. Models obtained from such kinetic coefficients closely corresponded to experimental results.
References
[1] A.Saha, G.B.Olson: J. Comput. Aided Mater. Des.14 (2007) 177. 10.1007/s10820-006-9031-zSuche in Google Scholar
[2] A.Saha, J.Jung, G.B.Olson: J. Comput. Aided Mater. Des.14 (2007) 201. 10.1007/s10820-006-9032-ySuche in Google Scholar
[3] S.W.Thompson, G.Krauss: Metall. Mater. Trans. A27 (1996) 1573. 10.1007/BF02649816Suche in Google Scholar
[4] E.J.Czyryca, R.E.Link, R.J.Wong, D.A.Aylor, T.W.Montemarano, J.P.Gudas: Nav. Eng. J.102 (1990) 63. 10.1111/j.1559-3584.1990.tb02632.xSuche in Google Scholar
[5] J.Chakraborty, D.Bhattacharjee, I.Manna: Scr. Mater.59 (2008) 247. 10.1016/j.scriptamat.2008.03.023Suche in Google Scholar
[6] J.Chakraborty, D.Bhattacharjee, I.Manna: Scr. Mater.61 (2009) 604. 10.1016/j.scriptamat.2009.05.035Suche in Google Scholar
[7] J.Chakraborty, P.Chattopadhyay, D.Bhattacharjee, I.Manna: Metall. Mater. Trans. A41 (2010) 2871. 10.1007/s11661-010-0288-1Suche in Google Scholar
[8] J.Chakraborty, I.Manna: Mater. Sci. Eng. A548 (2012) 33. 10.1016/j.msea.2012.03.056Suche in Google Scholar
[9] M.Venkatraman, O.N.Mohanty, R.N.Ghosh: Scand. J. Metall.30 (2001) 8. 10.1034/j.1600-0692.2001.300102.xSuche in Google Scholar
[10] M.Zhang, L.Li, R.Y.Fu, D.Krizan, B.C.De Cooman: Mater. Sci. Eng. A438–440 (2006) 296. 10.1016/j.msea.2006.01.128Suche in Google Scholar
[11] A.N.Bhagat, S.K.Pabi, S.Ranganathan, O.N.Mohanty: Mater. Sci. Technol.23 (2007) 158. 10.1179/174328407X157218Suche in Google Scholar
[12] B.M.Leister, J.N.DuPont: Mater. Sci. Technol.31 (2015) 1425. 10.1179/1743284714Y.0000000720Suche in Google Scholar
[13] G.Altamirano-Guerrero, E.J.Gutiérrez-Castañeda, O.García-Rincón, A.Salinas-Rodríguez: MRS Proceedings1812 (2016) 129. 10.1557/opl.2016.29Suche in Google Scholar
[14] M.E.Brown: Handbook of Thermal Analysis and Calorimetry: Principles and Practice, Elsevier Science, Amsterdam (1998). 10.1016/S1573-4374(98)80099-XSuche in Google Scholar
[15] R.Speyer: Thermal Analysis of Materials, Marcel Dekker, New York (1994). PMid:8120553Suche in Google Scholar
[16] C. Garciade Andrés, F.G.Caballero, C.Capdevila, L.F.Álvarez: Mater. Charact.48 (2002) 101. 10.1016/S1044-5803(02)00259-0Suche in Google Scholar
[17] A.Grajcar, W.Zalecki, P.Skrzypczyk, A.Kilarski, A.Kowalski, S.Kołodziej: J. Therm. Anal. Calorim.118 (2014) 739. 10.1007/s10973-014-4054-2Suche in Google Scholar
[18] V.N.Urtsev, D.A.Mirzaev, I.L.Yakovleva, N.I.Vinogradova: The Physics of Metals and Metallography105 (2008) 477. 10.1134/s0031918x08050086Suche in Google Scholar
[19] C.Li, X.Wang, X.He, C.Shang, Y.He: Mater. Sci. Forum654–656 (2010) 66. 10.4028/www.scientific.net/msf.654-656.66Suche in Google Scholar
[20] Q.Liu, W.Liu, X.Xiong: J. Mater. Res.27 (2012) 1060. 10.1557/jmr.2012.54Suche in Google Scholar
[21] Q.Liu, C.Li, J.Gu, W.Liu: Philos. Mag.94 (2014) 306. 10.1080/14786435.2013.853137Suche in Google Scholar
[22] T.Morimoto, F.Yoshida, Y.Kusumoto, A.Yanagida: ISIJ Int.52 (2012) 592. 10.2355/isijinternational.52.592Suche in Google Scholar
[23] T.Abe, M.Kurihara, H.Tagawa, K.Tsukada: Transactions of the Iron and Steel Institute of Japan27 (1987) 478. 10.2355/isijinternational1966.27.478Suche in Google Scholar
[24] X.Shi, W.Yan, W.Wang, Z.Yang, Y.Shan, K.Yang: ISIJ Int.56 (2016) 2284. 10.2355/isijinternational.ISIJINT-2016-286Suche in Google Scholar
[25] D.Isheim, S.Vaynman, M.E.Fine, D.N.Seidman: Scr. Mater.59 (2008) 1235. 10.1016/j.scriptamat.2008.07.045Suche in Google Scholar
[26] L.Ren, J.Zhu, L.Nan, K.Yang: Mater. & Des.32 (2011) 3980. 10.1016/j.matdes.2011.03.068Suche in Google Scholar
[27] J.W.Bai, P.P.Liu, Y.M.Zhu, X.M.Li, C.Y.Chi, H.Y.Yu, X.S.Xie, Q.Zhan: Materi. Sci. and Eng A584 (2013) 57. 10.1016/j.msea.2013.06.082Suche in Google Scholar
[28] T.Xi, M. BabarShahzad, D.Xu, J.Zhao, C.Yang, M.Qi, K.Yang: Mater. Sci. Eng. A675 (2016) 243. 10.1016/j.msea.2016.08.058Suche in Google Scholar
[29] Y.F.Zheng, R.M.Wu, X.C.Li, X.C.Wu: Mater. Sci. Technol.33 (2017) 454. 10.1080/02670836.2016.1224608Suche in Google Scholar
[30] J.-C.Zhao, M.R.Notis: Mater. Sci. Eng. R: Reports15 (1995) 135. 10.1016/0927-796X(95)00183-2Suche in Google Scholar
[31] J.Yang, W.E.Wood, J.Dehaven, M.Li, in: R.A.Wallis, H.W.Walton (Eds.) Heat Treating: Proceedings of the 18th Conference, ASM International (1998) 476. PMid:11938909Suche in Google Scholar
[32] Z.-Z.Yuan, X.-D.Chen, B.-X.Wang, Z.-J.Chen: J. Alloys Compd.399 (2005) 166. 10.1016/j.jallcom.2005.03.026Suche in Google Scholar
[33] W.Sha: Mater. Sci. Technol.21 (2005) 69. 10.1179/174328405X14407Suche in Google Scholar
[34] K.Biswas, S.Ram, L.Schultz, J.Eckert: J. Alloys Compd.397 (2005) 104. 10.1016/j.jallcom.2005.01.023Suche in Google Scholar
[35] F.Liu, F.Sommer, C.Bos, E.J.Mittemeijer: Int. Mater. Rev.52 (2007) 193. 10.1179/174328007X160308Suche in Google Scholar
[36] J.W.Christian: The Theory of Transformations in Metals and Alloy, Pergamon, London (2002) 529. 10.1016/b978-008044019-4/50016-7Suche in Google Scholar
[37] Z.-m.Zhang, Q.-w.Cai, W.Yu, X.-l.Li, L.-d.Wang: Journal of Iron and Steel Research, International19 (2012) 73. 10.1016/S1006-706X(13)60035-7Suche in Google Scholar
[38] K.Irvine, F.Pickering, W.Heselwood, M.Atkins: J. Iron. Steel Inst.186 (1957) 54.Suche in Google Scholar
[39] J.ZHAO: Mater. Sci. Technol.8 (1992) 997. 10.1179/mst.1992.8.11.1004Suche in Google Scholar
[40] I.Tamura: Steel Material Study on the Strength, Nikkan Kogyo Shinbun Ltd, Tokyo (1970).Suche in Google Scholar
[41] J.H.Hollomon, L.D.Jaffe: Trans. AIME162 (1945) 223.Suche in Google Scholar
[42] P.Thibaux, A.Métenier, C.Xhoffer: Metall. and Mater. Trans.A38 (2007) 1169. 10.1007/s11661-007-9150-5Suche in Google Scholar
[43] A.K.Jena, M.C.Chaturvedi: Phase transformation in materials, Prentice Hall, New Jersey (1992).Suche in Google Scholar
[44] R.P.Smith: Transactions of The Metallurgical Society of AIME230 (1964) 476.Suche in Google Scholar
[45] C.A.Wert: Phys. Rev.79 (1950) 601. 10.1103/physrev.79.601Suche in Google Scholar
[46] J.Ågren: Acta Metall.30 (1982) 841. 10.1016/0001-6160(82)90082-7Suche in Google Scholar
[47] J.Ågren: Scr. Metall.20 (1986) 1507. 10.1016/0036-9748(86)90384-4Suche in Google Scholar
[48] L.Fielding: Mater. Sci. Technol.29 (2013) 383. 10.1179/1743284712y.0000000157Suche in Google Scholar
[49] M.Takahashi: Curr. Opin. Solid State Mater. Sci.8 (2004) 213. 10.1016/j.cossms.2004.08.003Suche in Google Scholar
[50] M.D.Mulholland, D.N.Seidman: Acta Mater.59 (2011) 1881. 10.1016/j.actamat.2010.11.054Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- Application of the grey-based fuzzy logic approach for materials selection
- Study of phase transformation and crystal structure of Co nanowires
- Continuous cooling transformation behavior and the kinetics of bainite formation in a bainitic–martensitic steel
- The substructures and crystallographic features of martensite in high-carbon steel after cryogenic treatment
- Mechanical characterization of YBCO thin films using nanoindentation and finite element method
- Enhancing mechanical properties of wires by a novel continuous severe plastic deformation method
- Evolution of microstructure and mechanical properties of Mg-3Al-1Zn alloy through the corner of a deep cup-shaped forged part
- Effects of oxidation time on corrosion resistance of plasma electrolytic oxidation coatings on magnesium alloy
- Experimental investigation of phase equilibria in the Ni–Nb–V ternary system
- Short Communications
- Thermal effects on electromagnetic properties of Cu1-xMgxFe2O4 ferrites
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- Application of the grey-based fuzzy logic approach for materials selection
- Study of phase transformation and crystal structure of Co nanowires
- Continuous cooling transformation behavior and the kinetics of bainite formation in a bainitic–martensitic steel
- The substructures and crystallographic features of martensite in high-carbon steel after cryogenic treatment
- Mechanical characterization of YBCO thin films using nanoindentation and finite element method
- Enhancing mechanical properties of wires by a novel continuous severe plastic deformation method
- Evolution of microstructure and mechanical properties of Mg-3Al-1Zn alloy through the corner of a deep cup-shaped forged part
- Effects of oxidation time on corrosion resistance of plasma electrolytic oxidation coatings on magnesium alloy
- Experimental investigation of phase equilibria in the Ni–Nb–V ternary system
- Short Communications
- Thermal effects on electromagnetic properties of Cu1-xMgxFe2O4 ferrites
- DGM News
- DGM News