Enhancing mechanical properties of wires by a novel continuous severe plastic deformation method
-
Mojtaba Pourbashiri
Abstract
Commercially pure Al wires are severely plastic deformed by a novel method called equal channel angular torsion drawing (ECATD) up to four passes. Initial wires are drawn through an equal channel angular die and simultaneously torsion deformed by turning the ECATD die. The wires are deformed up to an equivalent strain of 1 to 4 (based on FE result) at room temperature. The microstructural evolution of the wires is investigated using optical microscopy of both longitudinal and transverse cross-sections. A grain refinement from 100 μm to a mean grain size of 1–10 μm is achieved mainly at the areas near the surface of the wires. A decreasing trend of grain refinement is observed from the edge area to the wire center due to the non-uniform strain distribution, resulting in an inhomogeneous hardness. A significant increase in hardness is obtained from ∼22 HV to ∼43 HV at the wire center and to ∼60 HV at the wire edge, this confirms simulated equivalent plastic strain. The most important advantage of this process is the ability to impose continuous large plastic deformation on wires. It can be used as an industrial method for continuous strain hardening and grain refinement of wires.
References
[1] Y.Estrin, A.Vinogradov: Acta Mater.61 (2013) 782–817. 10.1016/j.actamat.2012.10.038.Search in Google Scholar
[2] L.S.Toth, C.Gu: Mater. Charact.92 (2014) 1–14. 10.1016/j.matchar.2014.02.003.Search in Google Scholar
[3] A.Azushima, R.Kopp, A.Korhonen, D.Y.Yang, F.Micari, G.D.Lahoti, P.Groche, J.Yanagimoto, N.Tsuji, A.Rosochowski, A.Yanagida: CIRP Ann. - Manuf. Technol.57 (2008) 716–735. 10.1016/j.cirp.2008.09.005.Search in Google Scholar
[4] T.G.Langdon: Acta Mater. (2013). 10.1016/j.actamat.2013.08.018.Search in Google Scholar
[5] B.Srinivas, C.Srinivasu, B.Mahesh: Adv. Mater. Manuf. Charact.3 (2013) 291–296. 10.11127/ijammc.2013.02.053.Search in Google Scholar
[6] S.K.Hwang, H.M.Baek, H.S.Joo, Y.Im: Met. Mater. Int.21 (2015) 391–401. 10.1007/s12540-015-4382-1.Search in Google Scholar
[7] U.Chakkingal, A.B.Suriadi, P.F.Thomson: Scr. Mater.39 (1998) 677–684. 10.1016/S1359-6462(98)00234-6.Search in Google Scholar
[8] U.Chakkingal, A.B.Suriadi, P.F.Thomson: Mater. Sci. Eng., A 266 (1999) 241–249. 10.1016/S0921-5093(98)01129-0.Search in Google Scholar
[9] J.Alkorta, M.Rombouts, J.De Messemaeker, L.Froyen, J. GilSevillano: Scr. Mater.47 (2002) 13–18. 10.1016/S1359-6462(02)00089-1.Search in Google Scholar
[10] C. LuisPérez, C.Berlanga, J.Pérez-Ilzarbe: J. Mater. Process. Technol.143–144 (2003) 105–111. 10.1016/S0924-0136(03)00329-7.Search in Google Scholar
[11] S.K.Hwang, Y.G.Jin, I.H.Son, K.H.Rhee, D.L.Lee, Y.T.Im: Int. J. Mech. Sci.53 (2011) 479–484. 10.1016/j.ijmecsci.2011.03.008.Search in Google Scholar
[12] Y.T.I.S.K.Hwang, Y.G.Jin, H.M.Baek, D.K.Kim, I.H.Son: Steel Res. Int. (2011) 314–319.Search in Google Scholar
[13] J.H.Kim, S.K.Hwang, Y.-T.Im, I.-H.Son, C.M.Bae: Mater. Sci. Eng., A552 (2012) 316–322. 10.1016/j.msea.2012.05.046.Search in Google Scholar
[14] G.J.Raab, R.Z.Valiev, T.C.Lowe, Y.T.Zhu: Mater. Sci. Eng., A 382 (2004) 30–34. 10.1016/j.msea.2004.04.021.Search in Google Scholar
[15] C.Xu, S.Schroeder, P.B.Berbon, T.G.Langdon: Acta Mater.58 (2010) 1379–1386. 10.1016/j.actamat.2009.10.044.Search in Google Scholar
[16] Z.L.JingTaoWangJinWangb and Terence G.Langdon: Scr. Mater.67 (2012) 810–813. 10.1016/j.scriptamat.2012.07.028.Search in Google Scholar
[17] O.Bouaziz, Y.Estrin, H.S.Kim: Adv. Eng. Mater. (2009) NA–NA. 10.1002/adem.200900217.Search in Google Scholar
[18] K.Nakamura, K.Neishi, K.Kaneko, M.Nakagaki, Z.Horita: Mater. Trans.45 (2004) 3338–3342. 10.2320/matertrans.45.3338.Search in Google Scholar
[19] S.Khamsuk, N.Park, H.Adachi, D.Terada, N.Tsuji: J. Mater. Sci.47 (2012) 7841–7847. 10.1007/s10853-012-6661-2.Search in Google Scholar
[20] C.Wang, F.Li, J.Li, J.Dong, F.Xue: Mater. Sci. Eng., A598 (2014) 7–14. 10.1016/j.msea.2013.12.079.Search in Google Scholar
[21] K.Edalati, S.Lee, Z.Horita: J. Mater. Sci.47 (2011) 473–478. 10.1007/s10853-011-5822-z.Search in Google Scholar
[22] Y.Iwahashi, J.Wang, Z.Horita, M.Nemoto, T.G.Langdon: Scr. Mater.35 (1996) 143–146. 10.1016/1359-6462(96)00107-8Search in Google Scholar
[23] J.Tokutomia, K.H. NobuhiroTsuji, JunYanagimoto: J. Mater. Process. Technol.212 (2012) 2505–2513. 10.1016/j.jmatprotec.2012.06.008Search in Google Scholar
[24] J.T. KenichiHanazakiJunYanagimoto, NobuhiroTsuji: Mater. Sci. Eng., A534 (2012) 720–723. 10.1016/j.msea.2011.12.030Search in Google Scholar
[25] J.Yanagimoto, J.T. KenichiHanazaki, NobuhiroTsuji: CIRP Ann. - Manuf. Technol.60 (2011) 279–282. 10.1016/j.cirp.2011.03.148Search in Google Scholar
[26] K.Muszka, L.Madej: J. Majta, Mater. Sci. Eng., A574 (2013) 68–74. 10.1016/j.msea.2013.03.024.Search in Google Scholar
[27] S.C.Shrivastava, J.J.Jonas, G.Canova: J. Mech. Phys. Solids.30 (1982) 75–90. 10.1016/0022-5096(82)90014-X.Search in Google Scholar
[28] H.F.Lampman: ASM Handbook-Vol 4: Heat Treating (1994).Search in Google Scholar
[29] R.Z.Valiev, T.G.Langdon: Prog. Mater. Sci.51 (2006) 881–981. 10.1016/j.pmatsci.2006.02.003.Search in Google Scholar
[30] S. HadiHosseinikord: MSc thesis, Investigation and analysis of a new backward extrusion method for producing high strength containers, University of Tehran, Iran (2013).Search in Google Scholar
[31] V.M.Segal: Mater. Sci. Eng., A338 (2002) 331–344. 10.1016/S0921-5093(02)00066-7.Search in Google Scholar
[32] H.Zendehdel, A.Hassani: Mater. Des.37 (2012) 13–18. 10.1016/j.matdes.2011.12.009.Search in Google Scholar
[33] D.Orlov, Y.Beygelzimer, S.Synkov, V.Varyukhin, N.Tsuji, Z.Horita: Mater. Sci. Eng. A.519 (2009) 105–111. 10.1016/j.msea.2009.06.005.Search in Google Scholar
[34] C.Wang, F.Li, Q.Li, J.Li, L.Wang, J.Dong: Mater. Des.43 (2013) 492–498. doi: /10.1016/j.matdes.2012.07.047. 10.1016/j.matdes.2012.07.047Search in Google Scholar
[35] Z.Horita, T.G.Langdon: Mater. Sci. Eng. A.410–411 (2005) 422–425. 10.1016/j.msea.2005.08.133.Search in Google Scholar
[36] T.Sakai, A.Belyakov, R.Kaibyshev, H.Miura, J.J.Jonas: Prog. Mater. Sci.60 (2014) 130–207. 10.1016/j.pmatsci.2013.09.002.Search in Google Scholar
[37] F.Musin, A.Belyakov, R.Kaibyshev, Y.Motohashi, G.Itoh, K.Tsuzaki: Rev. Adv. Mater. Sci.25 (2010) 107–112.Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- Application of the grey-based fuzzy logic approach for materials selection
- Study of phase transformation and crystal structure of Co nanowires
- Continuous cooling transformation behavior and the kinetics of bainite formation in a bainitic–martensitic steel
- The substructures and crystallographic features of martensite in high-carbon steel after cryogenic treatment
- Mechanical characterization of YBCO thin films using nanoindentation and finite element method
- Enhancing mechanical properties of wires by a novel continuous severe plastic deformation method
- Evolution of microstructure and mechanical properties of Mg-3Al-1Zn alloy through the corner of a deep cup-shaped forged part
- Effects of oxidation time on corrosion resistance of plasma electrolytic oxidation coatings on magnesium alloy
- Experimental investigation of phase equilibria in the Ni–Nb–V ternary system
- Short Communications
- Thermal effects on electromagnetic properties of Cu1-xMgxFe2O4 ferrites
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- Application of the grey-based fuzzy logic approach for materials selection
- Study of phase transformation and crystal structure of Co nanowires
- Continuous cooling transformation behavior and the kinetics of bainite formation in a bainitic–martensitic steel
- The substructures and crystallographic features of martensite in high-carbon steel after cryogenic treatment
- Mechanical characterization of YBCO thin films using nanoindentation and finite element method
- Enhancing mechanical properties of wires by a novel continuous severe plastic deformation method
- Evolution of microstructure and mechanical properties of Mg-3Al-1Zn alloy through the corner of a deep cup-shaped forged part
- Effects of oxidation time on corrosion resistance of plasma electrolytic oxidation coatings on magnesium alloy
- Experimental investigation of phase equilibria in the Ni–Nb–V ternary system
- Short Communications
- Thermal effects on electromagnetic properties of Cu1-xMgxFe2O4 ferrites
- DGM News
- DGM News