Effects of oxidation time on corrosion resistance of plasma electrolytic oxidation coatings on magnesium alloy
-
Junjie Zhuang
, Renguo Song , Nan Xiang , Junpeng Lu and Ying Xiong
Abstract
The plasma electrolytic oxidation (PEO) technique was used to coat AZ31 magnesium alloy in a phosphate-based electrolyte. Effects of oxidation time on the morphology, phase structure, and corrosion resistance of the ceramic coatings were systematically investigated by scanning electron microscopy, X-ray diffraction, potentiodynamic polarization and electrochemical impedance spectroscopy testing. The main components of the resulting coatings were MgO, MgF2 and t-ZrO2. It was also found that there was a significant influence of the oxidation time on the corrosion resistance of the coatings. The coating obtained under the oxidation time of 10 min exhibited a corrosion current of 3.89 × 10−6 A cm−2 in 3.5 wt.% NaCl solution, which was a significant decrease compared with the uncoated magnesium alloy. The results of the corrosion tests indicated that the PEO coating formed at 10 min demonstrates a higher corrosion resistance compared to the samples formed at 5, 15 and 20 min.
References
[1] W.Shang, B.Z.Chen, X.C.Shi, Y.Chen, X.Xiao: J. Alloys Compd.474 (2009) 541. 10.1016/j.jallcom.2008.06.135Search in Google Scholar
[2] P.B.Srinivasan, J.Liang, C.Blawert, W.Dietzel: Corros. Eng. Sci. Technol.46 (2011) 706. 10.1179/147842210X12722706885968Search in Google Scholar
[3] R.G.Song, F.Yang, C.Blawert, W.Dietzel: J. Wuhan Univ. Technol.24 (2009) 111. 10.1007/s11595-009-1111-ySearch in Google Scholar
[4] Y.L.Cheng, J.H.Cao, M.K.Mao, Z.M.Peng, P.Skeldon, G.E.Thompson: Surf. Coat. Technol.269 (2015) 74. 10.1016/j.surfcoat.2014.12.078Search in Google Scholar
[5] Y.L.Cheng, T.W.Qin, L.L.Li, H.M.Wang, Z.Zhang: Corros. Eng. Sci. Technol.46 (2011) 17. 10.1179/174327809X409222Search in Google Scholar
[6] K.H.Dong, Y.W.Song, D.Y.Song, EHan: Surf. Coat. Technol.266 (2015) 188. 10.1016/j.surfcoat.2015.02.041Search in Google Scholar
[7] X.J.Cui, C.H.Liu, R.S.Yang, M.T.Li, X.Z.Lin: Surf. Coat. Technol.269 (2015) 228. 10.1016/j.surfcoat.2014.09.071Search in Google Scholar
[8] Y.Mori, A.Koshi, J.S.Liao, H.Asoh, S.Ono: Corros. Sci.88 (2014) 254. 10.1016/j.corsci.2014.07.038Search in Google Scholar
[9] S.Stojadinovic, R.Vasilic, J.Radic-Peric, M.Peric: Surf. Coat. Technol.273 (2015) 1. 10.1016/j.surfcoat.2015.03.032Search in Google Scholar
[10] X.J.Cui, X.Z.Lin, C.H.Liu, R.S.Yang, X.W.Zheng, M.Gong: Corros. Sci.90 (2015) 402. 10.1016/j.corsci.2014.10.041Search in Google Scholar
[11] J.Liang, P.B.Srinivasan, C.Blawert, W.Dietzel: Electrochim. Acta55 (2010) 6802. 10.1016/j.electacta.2010.05.087Search in Google Scholar
[12] Y.H.Gu, S.Bandopadhyay, C.Chen, Y.J.Guo, C.Y.Ning: J. Alloys Compd.543 (2012) 109. 10.1016/j.jallcom.2012.07.130Search in Google Scholar
[13] J.J.Zhuang, Y.Q.Guo, N.Xiang, Y.Xiong, Q.Hu, R.G.Song: Appl. Surf. Sci.357 (2015) 1461. 10.1016/j.apsusc.2015.10.025Search in Google Scholar
[14] A.Castellanos, A.Altube, J.M.Vega, E.Garcia-Lecina, J.A.Diez, H.J.Grande: Surf. Coat. Technol.278 (2015) 99. 10.1016/j.surfcoat.2015.07.017Search in Google Scholar
[15] R.F.Zhang, S.F.Zhang, Y.L.Shen, L.H.Zhang,T.Z.Liu, Y.Q.Zhang, S.B.Guo: Appl. Surf. Sci.258 (2012) 6602. 10.1016/j.apsusc.2012.03.088Search in Google Scholar
[16] S.Y.Chang, H.K.Lin, L.C.Tsao, W.T.Huang, Y.T.Huang: Corros. Eng. Sci. Technol.49 (2014) 17. 10.1179/1743278213Y.0000000097Search in Google Scholar
[17] X.H.Guo, K.Q.Du, Q.Z.Guo, Y.Wang, F.H.Wang: Corros. Sci.65 (2012) 367. 10.1016/j.corsci.2012.08.055Search in Google Scholar
[18] K.M.Lee, K.R.Shin, S.Namgung, B.Yoo, D.H.Shin: Surf. Coat. Technol.205 (2011) 3779. 10.1016/j.surfcoat.2011.01.033Search in Google Scholar
[19] P.B.Srinivasan, J.Liang, R.G.Balajeee, C.Blawert, M.Stormer, W.Dietzel: Appl. Surf. Sci.256 (2010) 3928. 10.1016/j.apsusc.2010.01.052Search in Google Scholar
[20] B.Kazanski, A.Kossenko, M.Zinigrad, A.Lugovskoy: Appl. Surf. Sci.287 (2013) 461. 10.1016/j.apsusc.2013.09.180Search in Google Scholar
[21] Z.P.Yao, P.B.Su, Q.X.Shen, P.F.Ju, C.Wu, Y.F.Zhai, Z.H.Jiang: Surf. Coat. Technol.269 (2015) 273. 10.1016/j.surfcoat.2015.01.032Search in Google Scholar
[22] R.O.Hussein, D.O.Northwood, X.Nie: Surf. Coat. Technol.237 (2013) 356. 10.1016/j.surfcoat.2013.09.021Search in Google Scholar
[23] Z.Z.Qiu, R.Wang, Y.S.Zhang, Y.F.Qu, X.H.Wu: J. Mater. Eng. Perform.24 (2015) 1483. 10.1007/s11665-015-1422-4Search in Google Scholar
[24] N.Xiang, R.G.Song, J.Zhao, H.Li, C.Wang, Z.X.Wang: T. Nonferr. Metal. Soc.25 (2015) 3323. 10.1016/S1003-6326(15)63988-7Search in Google Scholar
[25] Y.K.Pan, D.G.Wang, C.Z.Chen: Mater. Lett.119 (2014) 127. 10.1016/j.matlet.2013.12.103Search in Google Scholar
[26] Z.J.Li, Y.Yuan, X.Y.Jing: Mater. Corros.65 (2014) 493. 10.1002/maco.201206652Search in Google Scholar
[27] Z.P.Yao, Y.J.Xu, Y.F.Liu, D.L.Wang, Z.H.Jiang, F.P.Wang: J. Alloys. Compd.509 (2011) 8469. 10.1016/j.jallcom.2011.06.011Search in Google Scholar
[28] H.H.Luo, Q.Z.Cai, B.K.Wei, B.Yu, J.He: J. Alloys Compd.474 (2009) 551. 10.1016/j.jallcom.2008.06.151Search in Google Scholar
[29] D.Salih, A.Aylin, U.Metin: J. Alloys Compd.509 (2011) 8601. 10.1016/j.jallcom.2011.06.059Search in Google Scholar
[30] C.J.Wang, B.L.Jiang, M.Liu, Y.F.Ge: J. Alloys Compd.621 (2015) 53. 10.1016/j.jallcom.2014.09.168Search in Google Scholar
[31] V.Dehnavi, D.W.Shoesmith, B.L.Luan, M.Yari, X.Y.Liu: Mater. Chem. Phys.161 (2015) 49. 10.1016/j.matchemphys.2015.04.058Search in Google Scholar
[32] F.Zhu, J.W.Wang, S.H.Li, J.Zhang: Appl. Surf. Sci.258 (2012) 8985. 10.1016/j.apsusc.2012.05.135Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- Application of the grey-based fuzzy logic approach for materials selection
- Study of phase transformation and crystal structure of Co nanowires
- Continuous cooling transformation behavior and the kinetics of bainite formation in a bainitic–martensitic steel
- The substructures and crystallographic features of martensite in high-carbon steel after cryogenic treatment
- Mechanical characterization of YBCO thin films using nanoindentation and finite element method
- Enhancing mechanical properties of wires by a novel continuous severe plastic deformation method
- Evolution of microstructure and mechanical properties of Mg-3Al-1Zn alloy through the corner of a deep cup-shaped forged part
- Effects of oxidation time on corrosion resistance of plasma electrolytic oxidation coatings on magnesium alloy
- Experimental investigation of phase equilibria in the Ni–Nb–V ternary system
- Short Communications
- Thermal effects on electromagnetic properties of Cu1-xMgxFe2O4 ferrites
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Note from the Editor-in-Chief
- Original Contributions
- Application of the grey-based fuzzy logic approach for materials selection
- Study of phase transformation and crystal structure of Co nanowires
- Continuous cooling transformation behavior and the kinetics of bainite formation in a bainitic–martensitic steel
- The substructures and crystallographic features of martensite in high-carbon steel after cryogenic treatment
- Mechanical characterization of YBCO thin films using nanoindentation and finite element method
- Enhancing mechanical properties of wires by a novel continuous severe plastic deformation method
- Evolution of microstructure and mechanical properties of Mg-3Al-1Zn alloy through the corner of a deep cup-shaped forged part
- Effects of oxidation time on corrosion resistance of plasma electrolytic oxidation coatings on magnesium alloy
- Experimental investigation of phase equilibria in the Ni–Nb–V ternary system
- Short Communications
- Thermal effects on electromagnetic properties of Cu1-xMgxFe2O4 ferrites
- DGM News
- DGM News