Home Technology Electrochemically fabricated Fe–Ni alloy nanowires and their structural characterization
Article
Licensed
Unlicensed Requires Authentication

Electrochemically fabricated Fe–Ni alloy nanowires and their structural characterization

  • Tahir Mehmood , K. M. Wu , Aiman Mukhtar , Babar S. Khan , Adnan Saeed , Humaira Latif , Zahida Parveen and Syeda Ruqaya Kazmi
Published/Copyright: July 31, 2017

Abstract

Anodic alumina oxide membrane was used to electrodeposit Fe–Ni alloy nanowires by varying the potential. The morphology of electrodeposited alloy nanowires was studied by means of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy characterization techniques. The results indicate that Fe–Ni alloy nanowires have stable fcc phase at −1.4 V and −0.7 V and the content of iron inside nanopores increased with increasing applied potential during deposition. This can be verified by the current density vs time graphs of depositing Fe and Ni nanowires, the current density ratio of Ni to Fe at lower applied potential is greater than at comparatively higher applied potential.


*Correspondence address, Professor K.M. Wu, The State Key Laboratory of Refractories and Metallurgy, Hubei Provincial Key Laboratory for Systems Science on Metallurgical Processing, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, P.R. China, Tel.: 00862768862772, 008613100610041, Fax: 00862768862606, E-mail: ,

References

[1] T.Mehmood, B.S.Khan, A.Mukhtar, X.Chen, P.Yi, M.Tan: Mater. Lett.130 (2014) 256. 10.1016/j.matlet.2014.05.130Search in Google Scholar

[2] T.Mehmood, B.S.Khan, A.Mukhtar, M.Tan: Int. J. Mater. Res.106 (2015) 957. 10.3139/146.111269Search in Google Scholar

[3] T.Mehmood, A.Mukhtar, H.Wang, B.S.Khan: Int. J. Mater. Res.107 (2016) 283. 10.3139/146.111342Search in Google Scholar

[4] S.Thongmee, H.L.Pang, J.B.Yi, J.Ding, J.Y.Lin, L.H.Van: Acta Mater.57 (2009) 2482. 10.1016/j.actamat.2009.02.006Search in Google Scholar

[5] B.Y.Yoo, S.Hernandez, B.Koo, Y.Rheem, N.Myung: Water Sci. Technol.55 (2007) 149. PMid:17305134; 10.2166/wst.2007.017Search in Google Scholar PubMed

[6] E.Matei, I.Enculescu, M.E.Toimil, A.Leca, C.Ghica, V.Kuncser: J. Nanopart. Res.15 (2013) 1. 10.1007/s11051-013-1863-3Search in Google Scholar

[7] Y.Yoshizawa, S.Oguma, K.Yamauchi: J. Appl. Phys.64 (1988) 6044. 10.1063/1.342149Search in Google Scholar

[8] A.Fert, I.Campbell: J. Phys. F: Met. Phys6 (1976) 849. 10.1088/0305-4608/6/5/025Search in Google Scholar

[9] P.Milan, M.Schlesinger: Fundamentals of Electrochemical Deposition, New York: Wiley, 1998.Search in Google Scholar

[10] A.Saedi, M.Ghorbani: Mater. Chem. Phys.91 (2005) 417. 10.1016/j.matchemphys.2004.12.001Search in Google Scholar

[11] X.W.Wang, G.T.Fei, X.J.Xu, Z.Jin, L.D.Zhang: J. Phys. Chem. B109 (2005) 24326. 10.1021/jp050892vSearch in Google Scholar PubMed

[12] G.T.Fei, B.Wang, M.Wang, M.G.Kong, L.D.Zhang: Nanotechnology, 18 (2007) 365601. 10.1088/0957-4484/18/36/365601Search in Google Scholar

[13] H.Masuda, K.Fukuda: Science268 (1995) 1466. PMid:17843666; 10.1126/science.268.5216.1466Search in Google Scholar PubMed

[14] J.Speight: Lange's Handbook of Chemistry, 16th ed ed., McGraw-Hill Professional, Boston, MA, 2004.Search in Google Scholar

[15] I.Persson: Pure Appl. Chem.82 (2010) 1901. 10.1351/PAC-CON-09-10-22Search in Google Scholar

[16] T.Mehmood, A.Mukhtar, B.S.Khan, K.Wu: Int. J. Electrochem. Sci.11 (2016) 6423. 10.20964/2016.08.36Search in Google Scholar

Received: 2016-12-04
Accepted: 2017-06-14
Published Online: 2017-07-31
Published in Print: 2017-08-11

© 2017, Carl Hanser Verlag, München

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111528/html
Scroll to top button