Home Technology Modeling of hardening and fracture behavior in Gr.65 steel after intercritical heat treatments
Article
Licensed
Unlicensed Requires Authentication

Modeling of hardening and fracture behavior in Gr.65 steel after intercritical heat treatments

  • Kuan Ma , Jun Yang , Wen Li , Fang F. Liao , Yong H. Song , Xiao L. Xie and De N. Zou
Published/Copyright: July 31, 2017

Abstract

For high strength low alloys, intercritical heat treatment processes are usually used to obtain the dual phase steel. In this work, a micro–macroscopic model was developed for describing the hardening and fracture behavior of such steels after the heat treatments. In the microscopic model, a description of flow curves was established based on a 2D representative volume element from a real microstructure, whereas in the macroscopic model, the Gurson–Tveergard–Needleman approach was used to simulate the failure process. Furthermore, the simulation flow curves and true stress–strain curves were compared with the experimental observations. The results demonstrate that such a multiscale model can accurately predict the work hardening and fracture behavior of steels after the intercritical heat treatments.


*Correspondence address, Jun Yang, School of Metallurgical Engineering, Xi'an University of Architecture and Technology, P.R. China
**Wen Li, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Hangzhou West Street, Huangshi City 435003, P.R. China, Tel.: +86-714-984-034, Fax: +86-714-984-642, E-mail:

References

[1] H.J.Jun, J.S.Kang, D.H.Seo, K.B.Kang, C.G.Park: Mater. Sci. Eng. A422 (2006) 157. 10.1016/j.msea.2005.05.008Search in Google Scholar

[2] S.Oliver, T.B.Jones, G.Fourlaris: Mater. Sci. Technol.23 (2007) 423. 10.1179/174328407X168937Search in Google Scholar

[3] Y.I.Son, Y.K.Lee, K.T.Park, C.S.Lee, D.H.Shin: Acta Mater.53 (2005) 3125. 10.1016/j.actamat.2005.02.015Search in Google Scholar

[4] L.Shi, Z.Yan, Y.Liu, C.Zhang, Z.Qiao, B.Ning, H.Li: Mater. Sci. Eng. A590 (2005) 715. 10.1016/j.msea.2005.10.006Search in Google Scholar

[5] J.Kang, C.Wang, G.D.Wang: Mater. Sci. Eng. A553 (2012) 96. 10.1016/j.msea.2012.05.098Search in Google Scholar

[6] Z.J.Xie, S.F.Yuan, W.H.Zhou, J.R.Yang, H.Guo, C.J.Shang: Mater. Des.59 (2014) 193. 10.1016/j.matdes.2014.02.035Search in Google Scholar

[7] M.A.Maleque, Y.M.Poon, H.H.Masjuki: J. Mater. Process. Technol.153 (2004) 482. 10.1016/j.jmatprotec.2004.04.391Search in Google Scholar

[8] W.H.Zhou, X.L.Wang, P.K.C.Venkatsurya, H.Guo, C.J.Shang, R.D.K.Misra: Mater. Sci. Eng. A607 (2014) 569. 10.1016/j.msea.2014.03.107Search in Google Scholar

[9] M.Azuma, S.Goutianos, N.Hansen, G.Winther, X.Huang: Mater. Sci. Technol.28 (2012) 1092. 10.1179/1743284712Y.0000000006Search in Google Scholar

[10] B.C.Hwang, T.Y.Cao, S.Y.Shin, S.H.Kim, S.H.Lee, S.J.Kim: Mater. Sci. Technol.21 (2005) 967. 10.1179/174328405X47609Search in Google Scholar

[11] A.Ramazani, K.Mukherjee, H.Quade, U.Prahl, W.Bleck: Mater. Sci. Eng. A560 (2013) 129139. 10.1016/j.msea.2012.09.046Search in Google Scholar

[12] P.Phetlam, V.Uthaisangsuk: Mater. Des.82 (2015) 189. 10.1016/j.matdes.2015.05.068Search in Google Scholar

[13] A.Ramazani, K.Mukherjee, U.Prahl, W.Bleck: Comp. Mater. Sci.52 (2012) 4654. 10.1016/j.commatsci.2011.05.041Search in Google Scholar

[14] M.R.Ayatollahi, A.C.Darabi, H.R.Chamani, J.Kadkhodapour: Acta Mech. Solida Sin.29 (2016) 95. 10.1016/S0894-9166(16)60009-5Search in Google Scholar

[15] A.Ramazani, K.Mukherjee, A.Abdurakhmanov, U.Prahl, M.Schleser, U.Reisgen, W.Bleck: Mater. Sci. Eng. A589 (2014) 114. 10.1016/j.msea.2013.09.056Search in Google Scholar

[16] S.M.K.Hosseini, A.Zarei-Hanzaki, M.J.Y.Panah, S.Yue: Mater. Sci. Eng. A374 (2004) 122. 10.1016/j.msea.2004.01.007Search in Google Scholar

[17] M.I.Latypov, S.Shin, B.C.De Cooman, H.S.Kim: Acta Mater.108 (2016) 219. 10.1016/j.actamat.2016.02.001Search in Google Scholar

[18] A.Ramazani, M.Abbasi, U.Prahl, W.Bleck: Comp. Mater. Sci.64 (2012) 101. 10.1016/j.commatsci.2012.01.031Search in Google Scholar

[19] B.Berisha, C.Raemy, C.Becker, M.Gorji, P.Hora: Acta Mater.100 (2015) 191. 10.1016/j.actamat.2015.08.035Search in Google Scholar

[20] A.L.Gurson: J. Eng. Mater. Techol.99 (1977) 215. 10.1115/1.3443401Search in Google Scholar

[21] V.Tvergaard, A.Needleman: Acta Metall.32 (1984) 157. 10.1016/0001-6160(84)90213-XSearch in Google Scholar

[22] A.Needleman, V.Tvergaard: J. Mech. Phys. Solids35 (1987) 151. 10.1016/0022-5096(87)90034-2Search in Google Scholar

[23] N.Vajragupta, V.Uthaisangsuk, B.Schmaling, S.Münstermann, A.Hartmaier, W.Bleck: Comp. Mater. Sci.54 (2012) 271. 10.1016/j.commatsci.2011.10.035Search in Google Scholar

[24] M.Abendroth, M.Kuna: Comp. Mater. Sci.28 (2003) 633. 10.1016/j.commatsci.2003.08.031Search in Google Scholar

[25] J.Faleskog, X.Gao, C.F.Shih: Int. J. Fract.89 (1998) 355. 10.1023/A:1007421420901Search in Google Scholar

Received: 2017-02-11
Accepted: 2017-04-24
Published Online: 2017-07-31
Published in Print: 2017-08-11

© 2017, Carl Hanser Verlag, München

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111522/html
Scroll to top button