Home Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass
Article
Licensed
Unlicensed Requires Authentication

Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass

  • Ke Yang , Xinhui Fan , Bing Li , Yanhong Li , Xin Wang and Xuanxuan Xu
Published/Copyright: July 31, 2017
Become an author with De Gruyter Brill

Abstract

In this paper, a systematic study of crystallization kinetics and deformation behavior is presented for (Cu50Zr50)94Al6 bulk metallic glass in the supercooled liquid region. Crystallization results showed that the activation energy for (Cu50Zr50)94Al6 was calculated using the Arrhenius equation in isothermal mode and the Kissinger–Akahira–Sunose method in non-isothermal mode. The activation energy was quite high compared with other bulk metallic glasses. Based on isothermal transformation kinetics described by the Johson–Mehl–Avrami model, the average Avrami exponent of about 3.05 implies a mainly diffusion controlled three-dimensional growth with an increasing nucleation rate during the crystallization. For warm deformation, the results showed that deformation behavior, composed of homogeneous and inhomogeneous deformation, is strongly dependent on strain rate and temperature. The homogeneous deformation transformed from non-Newtonian flow to Newtonian flow with a decrease in strain rate and an increase in temperature. It was found that the crystallization during high temperature deformation is induced by heating. The appropriate working temperature/strain rate combination for the alloy forming, without in-situ crystallization, was deduced by constructing an empirical deformation map. The optimum process condition for (Cu50Zr50)94Al6 can be expressed as T∼733 K and ε. ∼ 10−3 s−1.


*Correspondence address, Prof. Xinhui Fan, School of Material and Chemical Engineering, Xi'an Technological University, Xuefu Middle Road No. 2, Xi'an 710021, P.R. China, Tel.: +86-29-86173323, Fax: +86-29-86173323, E-mail: ,

References

[1] A.Inoue, K.Ohtera, K.Kita, TMasumoto: Jpn. J. Appl. Phys.27 (1988) L2248. 27.L2248. 10.1143/JJAPSearch in Google Scholar

[2] A.Inoue, T.Zhang, T.Masumoto: Mater. Trans., JIM31 (1990) 425. 10.2320/matertrans1989.31.425Search in Google Scholar

[3] A.Inoue: Acta Mater.48 (2000) 279. 10.1016/S1359-6454(99)00300-6Search in Google Scholar

[4] C.R.M.Afonso, C.Bolfarini, W.J.Botta, C.S.Kiminami: Int. J. Mater. Res.103 (2012) 1096. 10.3139/146.110805Search in Google Scholar

[5] Y.Kawamura, T.Shibata, A.Inoue, T.Masumoto: Acta Mater.46 (1998) 253. 10.1016/S1359-6454(97)00235-8Search in Google Scholar

[6] N.Nishiyama, K.Amiya, A.Inoue: MRS Proceedings806 (2003) 1. 10.1557/PROC-806-MM10.3Search in Google Scholar

[7] L.Liu, Q.Chen, K.C.Chan, J.F.Wang, G.K.H.Pang: Mater. Sci. Eng. A449–451 (2007) 949. 10.1016/j.msea.2006.02.284Search in Google Scholar

[8] H.S.Shin, Y.J.Jeong, J.H.Ahn: J. Alloys Comp.434–435 (2007) 40. 10.1016/j.jallcom.2006.08.095Search in Google Scholar

[9] G.Wang, J.Shen, J.F.Sun, Y.J.Huang: J. Non-Cryst. Solids351 (2005) 209. 10.1016/j.jnoncrysol.2004.11.006Search in Google Scholar

[10] Y.Kawamura, T.Shibata, A.Inoue, T.Masumoto: Appl. Phys. Lett.69 (1996) 1208. 10.1063/1.117413Search in Google Scholar

[11] X.Fu, Y.Li, C.A.Schuhc: Acta Mater.55 (2007) 3059. 10.1016/j.actamat.2007.01.009Search in Google Scholar

[12] M.Q.Jiang, G.Wilde, L.H.Dai: Mech. Mater.81 (2015) 72. 10.1016/j.mechmat.2014.10.002Search in Google Scholar

[13] Y.Kawamura, T.Shibata, A.Inoue, T.Masumoto: Mater. Trans. JIM40 (1999) 335. 10.1016/S1359-6454(97)00235-8Search in Google Scholar

[14] J.Schroers, Q.Pham, A.Desai: J. Microelectromech. S.16 (2007) 240. 10.1109/JMEMS.0007.892889Search in Google Scholar

[15] S.Gravier, J.J.Blandin, P.Donnadieu: Philos. Mag. A88 (2008) 2357. 10.1080/14786430802192112Search in Google Scholar

[16] BLi, Y.H.Li, K.Yang, J.HLi, X.HFan: Thermochim. Acta642 (2016) 105. 10.1016/j.tca.2016.08.001Search in Google Scholar

[17] X.X.Hu, J.C.Qiao, J.M.Pelletier, Y.Yao: J. Non-Cryst. Solids432 (2016) 254. 10.1016/j.jnoncrysol.2015.10.018Search in Google Scholar

[18] N.Mehta, K.Singh, N.S.Saxena, Phys. B Condens. Matter403 (2008) 3928. 10.1016/j.physb.2008.07.016Search in Google Scholar

[19] S.Jaroslav. Thermochim. Acta3 (1971) 1. 10.1016/0040-6031(71)85051-7Search in Google Scholar

[20] M.Avrami: J. Chem. Phys.7 (1939) 1103. 10.1063/1.1750380Search in Google Scholar

[21] M.Avrami: J. Chem. Phys.8 (1940) 212. 10.1063/1.1750631Search in Google Scholar

[22] M.Avrami: J. Chem. Phys.9 (1941) 177. 10.1063/1.1750872Search in Google Scholar

[23] J.C.Qiao, J.M.Pelletier: J. Non-Cryst. Solids357 (2011) 2590. 10.1016/j.jnoncrysol.2010.12.071Search in Google Scholar

[24] Z.Z.Yuan, X.D.Chen, B.X.Wang, Y.J.Wang: J. Alloys Comp.407 (2006) 163. 10.1016/j.jallcom.2005.06.022Search in Google Scholar

[25] Q.Chen, L.Liu, K.C.Chan: J. Alloys. Comp.419 (2006) 71. 10.1016/j.jallcom.2005.09.073Search in Google Scholar

[26] S.Scudino, S.Venkatarama, J.Eckert: J. Alloys. Comp.460 (2008) 263. 10.1016/j.jallcom.2007.05.108Search in Google Scholar

[27] Y.F.Ouyang, L.Y.Wang, H.M.Chen, X.Y.Cheng, X.P.Zhong, Y.P.Feng: J. Non-Cryst. Solids354 (2008) 5555. 10.1016/j.jnoncrysol.2007.02.099Search in Google Scholar

[28] Z.F.Yao, J.C.Qiao, C.Zhang, J.M.Pelletier, Y.Yao: J. Non-Cryst. Solids415 (2015) 42. 10.1016/j.jnoncrysol.2015.02.017Search in Google Scholar

[29] F.Liu, F.Sommer, C.Bos & E.J.Mittemeijer: Int. Mater. Rev.52 (2007) 193. 10.1179/174328007X160308Search in Google Scholar

[30] R.Fernández, W.Carrasco, A.Zúñiga: J. Non-Cryst. Solids356 (2010) 1165. 10.1016/j.jnoncrysol.2010.06.016Search in Google Scholar

[31] A.H.Caia, W.K.An, Y.Luo, T.L.Li, X.S.Li, X.Xiong, Y.Liu: J. Alloys Comp.490 (2010) 642. 10.1016/j.jallcom.2009.10.125Search in Google Scholar

[32] W.J.Kim, D.S.Ma, H.G.Jeong: Scr. Mater.49 (2003) 1067. 10.1016/j.scriptamat.2003.08.014Search in Google Scholar

[33] Y.V.R.K.Prasad, H.L.Gegel, S.M.Doraivelu: Mater. Trans. JIM15 (1984) 1883. 10.1007/BF02664902Search in Google Scholar

[34] T.G.Nieh, K.Higashi, J.Wadsworth: Scr. Mater.283 (2000) 105. 10.1016/S0921-5093(00)00623-7Search in Google Scholar

[35] C.A.Schuh, T.C.Hufnagel, U.Ramamurty: Acta Mater.55 (2007) 4067. 10.1016/j.actamat.2007.01.052Search in Google Scholar

[36] M.D.Demetriou, W.L.Johnson: J. Appl. Phys.95 (2004) 2857. 10.1063/1.1645669Search in Google Scholar

[37] G.Wang, J.Shen, J.F.Sun, Y.J.Huang: J Non-Cryst. Solids351 (2005) 209. 10.1016/j.jnoncrysol.2004.11.006Search in Google Scholar

[38] K.S.Lee, J.Eckert, Y.W.Chang: J Non-Cryst. Solids353 (2007) 2515. 10.1016/j.jnoncrysol.2007.04.032Search in Google Scholar

[39] Y.Liu, J.J.Blandin, G.Kapelski, M.Suéry: Mater. Sci. Eng. A528 (2011) 3748. 10.1016/j.msea.2011.01.045Search in Google Scholar

[40] H.S.Shin, Y.J.Jeong, H.Y.Choi, A.Inoue: Mater. Sci. Eng.A449–451 (2007) 243. 10.1016/j.msea.2006.02.290Search in Google Scholar

[41] J.Shen, G.Wang, J.F.Sua, Z.H.Stachurski, C.Yan, L.Ye, B.D.Zhou: Intermetallics13 (2005) 79. 10.1016/j.intermet.2004.06.008Search in Google Scholar

Received: 2016-12-08
Accepted: 2017-05-18
Published Online: 2017-07-31
Published in Print: 2017-08-11

© 2017, Carl Hanser Verlag, München

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111525/html
Scroll to top button