Phase equilibria of the Mo–Al–Ho ternary system
-
Yitai Li
Abstract
Investigation into the reactions and phase equilibria of transition metal elements (i. e. Mo, Zr, Cr, V and Ti), Al and rare earths is academically and industrially important for the development of both refractory alloys and lightweight high-temperature materials. In this work, the equilibria of the Mo–Al–Ho ternary system at 773 K have been determined by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al4Mo2Ho has been found and the other ternary phase Al43Mo4Ho6 is observed. Ten binary phases in the Al–Mo and Al–Ho systems, including Al17Mo4 rather than Al4Mo, have been determined to exist at 773 K. The homogeneity ranges of AlMo3 and Al8Mo3 phase are 7.5 at.% and 1 at.%, respectively. According to the phase-disappearing method, the maximum solubility of Al in Mo is about 16 at.%.
References
[1] J.H.Schneibel: Intermetallics11 (2003) 625–632. 10.1016/S0966-9795(03)00044-XSearch in Google Scholar
[2] N.Takata, N.Sekido, M.Takeyama, J.H.Perepezko: Mater. Res. Symp. Proc. Vol. 1760, London (2015) mrsf14-1760. 10.1557/opl.2015.53Search in Google Scholar
[3] P.Jain, K.S.Kumar: Acta Mater.58 (2010) 2124–2142. 10.1016/j.actamat.2009.11.054Search in Google Scholar
[4] T.G.Nieh, J.G.Wang, C.T.Liu: Intermetallics9 (2001) 73–79. 10.1016/S0966-9795(00)00098-4Search in Google Scholar
[5] C.P.Chang, M.H.Loretto: Acta Metall.36 (1988) 805–810. 10.1016/0001-6160(88)90134-4Search in Google Scholar
[6] F.J.Kedves, D.Bergner: DIMETA-82: Diffusion in Metals and Alloys, Vol. 4. Trans Tech Publications, Switzerland (1983) 334–337.Search in Google Scholar
[7] H.Okamoto: J. Phase Equilib. Diff.31 (2010) 492–493. 10.1007/s11669-010-9758-9Search in Google Scholar
[8] A.R.Farkoosh, X.G.Chen, M.Pekguleryuz: Mater. Sci. Eng. A620 (2015) 181–189. 10.1016/j.msea.2014.10.004Search in Google Scholar
[9] K.Liu, H.Ma, X.G.Chen: J. Alloys Compd.694 (2017) 345–365. 10.1016/j.jallcom.2016.10.005Search in Google Scholar
[10] R.Lundin, J.R.Wilson: Adv. Mater. Process.158 (2000) 52–55.Search in Google Scholar
[11] D.Ping, K.Hono, A.Inoue: Metall. Mater. Trans. A31 (2000) 607–614. 10.1007/s11661-000-0004-7Search in Google Scholar
[12] L.Jin, Y.B.Kang, P.Chartrand, C.D.Fuerst: Calphad34 (2010) 456–466. 10.1016/j.calphad.2010.08.004Search in Google Scholar
[13] A.Akhlaghi, M.Noghani, M.Emamy: Procedia Mater. Sci.11 (2015) 55–60. 10.1016/j.mspro.2015.11.085Search in Google Scholar
[14] X.X.Chen, H.Liu, Y.Z.Zhan, H.Q.Tang: Int. J. Mater. Res.107 (2016) 842–850. 10.3139/146.111405Search in Google Scholar
[15] D.H.Xiao, J.N.Wang, D.Y.Ding, H.L.Yang: J. Alloys Compd.352 (2003) 84–88. 10.1016/S0925-8388(02)01162-3Search in Google Scholar
[16] J.L.Huang, J.L.Liang, H.Y.Zhou, Y.H.Zhuang, J.L.Yan: J. Alloys Compd.307 (2000) 199–201. 10.1016/S0925-8388(00)00800-8Search in Google Scholar
[17] H.Z.Wang, Y.Z.Zhan, W.B.Zhou: J. Phase Equilib. Diff.34 (2013) 322–327. 10.1007/s11669-013-0244-zSearch in Google Scholar
[18] S.Niemann, W.Jeitschko: J. Solid State Chem.85 (1995) 345–349. 10.1006/jssc.1995.1193Search in Google Scholar
[19] H.Liu, Y.F.Pan, C.H.Tang, M.M.Liu, X.X.Chen, W.C.Yang, H.Q.Tang, Y.Z.Zhan: J. Phase Equilib. Diff.36 (2015) 218–223. 10.1007/s11669-015-0375-5Search in Google Scholar
[20] Y.F.Pan, W.C.Yang, C.H.Tang, Y.N.Lan, Y.Z.Zhan: Phase Transitions88 (2015) 1111–1121. 10.1080/01411594.2015.1041950Search in Google Scholar
[21] Y.Z.Zhan, Y.Du, Y.H.Zhuang: in: J.-C.Zhao (Ed.), Methods for Phase Diagram Determination, Elsevier Science Press, Amsterdam, The Netherlands (2007) 108–150. 10.1016/B978-008044629-5/50004-5Search in Google Scholar
[22] M.Zhao, L.Song: The Boundary Theory of Phase Diagrams and Its Application, Science Press, Beijing, P.R. China (2004) 60–120.Search in Google Scholar
[23] F.Sperner: Z. Metallkd.50 (1959) 588–591.Search in Google Scholar
[24] J.Adam, J.B.Rich: Acta Crystallogr.7 (1954) 813–816. 10.1107/S0365110X54002514Search in Google Scholar
[25] K.Yamaguchi, K.Simizu: Nippon Kinzoku Gakkai-Shi.4 (1940) 390–392.Search in Google Scholar
[26] F.Wöhler, F.Michel: Liebigs Ann. Chem. Pharm.115 (1860) 102–105. 10.1002/jlac.18601150120Search in Google Scholar
[27] M.Pötzschke, K.Schubert: Z. Metallkd.53 (1962) 548–561.Search in Google Scholar
[28] J.B.Forsyth, G.Gran: Acta Crystallogr.15 (1962) 100–104. 10.1107/S0365110X62000304Search in Google Scholar
[29] J.Rexer: Z. Metallkd.62 (1971) 844–848.Search in Google Scholar
[30] J.C.Schuster, H.Ipser: Metall. Trans. A22 (1991) 1792–1736. 10.1007/BF02646496Search in Google Scholar
[31] M.Eumann, G.Sauthoff, M.Palm: Z. Metallkd.97 (2006) 1502–1511. 10.3139/146.101412Search in Google Scholar
[32] A.Meyer: J. Less Common Met.10 (1966) 121–129. 10.1016/0022-5088(66)90121-4Search in Google Scholar
[33] K.A.GschneidnerJr, F.W.Calderwood: Bull. Alloy Phase Diagr.9 (1988) 684–686. 10.1007/BF02883167Search in Google Scholar
[34] G.Cacciamani, S.De Negri, A.Saccone, R.Ferro: Intermetallics11 (2003) 1135–1151. 10.1016/S0966-9795(03)00151-1Search in Google Scholar
[35] H.Okamoto: J. Phase Equilib. Diff.32 (2011) 260–260. 10.1007/s11669-011-9876-zSearch in Google Scholar
[36] M.Andrecut, I.Pop, I.Burda: J. Phys. D Appl. Phys.26 (1993) 1810. 10.1088/0022-3727/26/10/043Search in Google Scholar
[37] M.J.Pang, Y.Z.Zhan, W.C.Yang, C.L.Li, Y.Du: J. Alloys Compd.508 (2010) 79–84. 10.1016/j.jallcom.2010.08.058Search in Google Scholar
[38] M.JPang, Y.ZZhan, Y.Du: J. Solid State Chem.198 (2013) 344–356. 10.1016/j.jssc.2012.10.020Search in Google Scholar
[39] Y.Z.Zhan, Z.L.Yang, H.L.Mo, Y.Du: Metall. Mater. Trans. A43 (2012) 29–36. 10.1007/s11661-011-0842-5Search in Google Scholar
[40] M.Szcześniak, C.Oleksy, J.Śliwiński, R.Szukiewicz, M.Wiejak, J.Kołaczkiewicz: Appl. Surf. Sci.330 (2015) 172–177. 10.1016/j.apsusc.2014.12.131Search in Google Scholar
[41] J.Bandyopadhyay, K.P.Gupta: Cryogenics18 (1978) 54–55. 10.1016/0011-2275(78)90141-8Search in Google Scholar
[42] N.Saunders: J. Phase Equilib.18 (1997) 370–378. 10.1007/s11669-997-0063-1Search in Google Scholar
[43] V.V.Vorob'ev, Y.N.Smirnov, V.A.Finkel: Soviet physics, JETP.22 (1966) 1212.Search in Google Scholar
[44] J.A.Leake: Acta Crystallogr.17 (1964) 918–924. 10.1107/S0365110X64002389Search in Google Scholar
[45] Y.N.Grin, M.Ellner, K.Peters, J.C.Schuster: Z. Kristallogr.210 (1995) 96–99. 10.1524/zkri.1995.210.2.96Search in Google Scholar
[46] L.K.Walford: Acta Crystallogr.17 (1964) 57–59. 10.1107/S0365110X64000123Search in Google Scholar
[47] K.H.J.Buschow, A.S.Van der Goot: J. Less Common Met.24 (1971) 117–120. 10.1016/0022-5088(71)90175-5Search in Google Scholar
[48] K.H.J.Buschow: J. Less Common Met.8 (1965) 209–212. 10.1016/0022-5088(65)90047-0Search in Google Scholar
[49] A.Millhouse, H.G.Purwins, E.Walker: Solid State Commun.11 (1972) 707–712. 10.1016/0038-1098(72)90491-7Search in Google Scholar
[50] E.Havinga: J. Less Common Met.41 (1975) 241–254. 10.1016/0022-5088(75)90031-4Search in Google Scholar
[51] M.L.Fornasini, A.Palenzona: J. Less Common Met.45 (1976) 137–141. 10.1016/0022-5088(76)90205-8Search in Google Scholar
[52] L.Brewer, R.H.Lamoreaux, R.Ferro, R.Marazza, K.Girgis: Molybdenum: Physico-chemical Properties of its Compounds and Alloys, International Atomic Energy Agency, Vienna, Special Issue 7 (1980) 123–127. 10.1007/BF02881193Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Review
- Current developments of biomedical porous Ti–Mo alloys
- Original Contributions
- Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass
- Modeling of hardening and fracture behavior in Gr.65 steel after intercritical heat treatments
- Time evolution of agglomerate size of semisolid magnesium alloy AZ91D during a real isothermal shearing
- Effect of stirring speed on microstructure of A356 alloy cast through rheometal process
- Phase equilibria of the Mo–Al–Ho ternary system
- Experimental investigation of phase equilibria in the Zr–Cu–Ni ternary system
- Hot corrosion of the ceramic composite coating Ni3Al–Al2O3–Al2O3/MgO plasma sprayed on 316L stainless steel
- Tribological properties of B4C–TiB2–TiC–Ni cermet coating produced by HVOF
- Electrochemically fabricated Fe–Ni alloy nanowires and their structural characterization
- Short Communications
- Synthesis and growth mechanisms of ZrC whiskers fabricated by a VLS process
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Review
- Current developments of biomedical porous Ti–Mo alloys
- Original Contributions
- Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass
- Modeling of hardening and fracture behavior in Gr.65 steel after intercritical heat treatments
- Time evolution of agglomerate size of semisolid magnesium alloy AZ91D during a real isothermal shearing
- Effect of stirring speed on microstructure of A356 alloy cast through rheometal process
- Phase equilibria of the Mo–Al–Ho ternary system
- Experimental investigation of phase equilibria in the Zr–Cu–Ni ternary system
- Hot corrosion of the ceramic composite coating Ni3Al–Al2O3–Al2O3/MgO plasma sprayed on 316L stainless steel
- Tribological properties of B4C–TiB2–TiC–Ni cermet coating produced by HVOF
- Electrochemically fabricated Fe–Ni alloy nanowires and their structural characterization
- Short Communications
- Synthesis and growth mechanisms of ZrC whiskers fabricated by a VLS process
- DGM News
- DGM News