Home Technology Hot corrosion of the ceramic composite coating Ni3Al–Al2O3–Al2O3/MgO plasma sprayed on 316L stainless steel
Article
Licensed
Unlicensed Requires Authentication

Hot corrosion of the ceramic composite coating Ni3Al–Al2O3–Al2O3/MgO plasma sprayed on 316L stainless steel

  • Amir Khodaparast Shirazi and Seyed Rahim Kiahosseini
Published/Copyright: July 31, 2017

Abstract

Ni3Al–Al2O3–Al2O3/MgO three-layered coatings with thicknesses of 50, 100, and 150 μm for Al2O3/MgO and 100 μm for the other layers were deposited on 316L stainless steel using plasma spraying. X-ray diffraction, atomic force microscopy, furnace hot corrosion testing in the presence of a mixture of Na2SO4 and V2O5 corrosive salts and scanning electron microscopy were used to determine the structural, morphological and hot corrosion resistance of samples. Results revealed that the crystalline grains of MgO and Al2O3 coating were very small. Weight loss due to hot corrosion decreased from approximately 4.267 g for 316L stainless steel without coating to 2.058 g. The samples with 150 μm outer coating showed improved resistance with the increase in outer layer thickness. Scanning electron microscopy of the coated surface revealed that the coating's resistance to hot corrosion is related to the thickness and the grain size of Al2O3/MgO coatings.


*Correspondence address, Dr. Seyed Rahim Kiahosseini, Department of Engineering, Damghan Branch, Islamic Azad University, Cheshme-Ali Blvd, Damghan 3671639998, Iran, Tel.: +98-9127312502, Fax: +98-2335225067, E-mail:

References

[1] N.Eliaz, G.Shemesh, R.M.Latanision: Eng. Fail. Anal.9 (2002) 31. 10.1016/S1350-6307(00)00035-2Search in Google Scholar

[2] K.D.Ramkumar, A.Chandrasekhar, A.Srivastava, H.Preyas, S.Chandra, S.Dev, N.Arivazhagan: J. Manuf. Processes24 (2016) 46. 10.1016/j.jmapro.2016.07.006Search in Google Scholar

[3] M.J.Kim, D.B.Lee: Met. Mater. Int.22 (2016) 430. 10.1007/s12540-016-5601-0Search in Google Scholar

[4] V.Chawla, A.Chawla, D.Puri, S.Prakash, P.G.Gurbuxani, B.S.Sidhu: J. Miner. Mater. Charact. Eng.10 (2011) 367. 10.4236/jmmce.2011.104027Search in Google Scholar

[5] M.R.Abbas, M.B.Uday, A.M.Noor, N.Ahmad, S.Rajoo: Mater. Des.109 (2016) 47. 10.1016/j.matdes.2016.07.070Search in Google Scholar

[6] Ö.Aydin, P.Topuz: Mater. Test.58 (2016) 146. 10.3139/120.110835Search in Google Scholar

[7] M.Panzenböck: Prakt. Metallogr.53 (2016) 641. 10.3139/147.110381Search in Google Scholar

[8] Z.Soleimanipour, S.Baghshahi, R.Shoja-razavi, M.Salehi: Ceram. Int.42 (2016) 17698. 10.1016/j.ceramint.2016.08.090Search in Google Scholar

[9] V.Rajendran, A.Karthik, S.R.Srither, S.Arunmetha, P.Manivasakan: Surf. Coat. Technol.262 (2015) 154. 10.1016/j.surfcoat.2014.12.039Search in Google Scholar

[10] J.Song, X.Zhang, C.Deng, C.Den, M.Liu, K.Zhou, X.Tong: Ceram. Int.42 (2016) 3163. 10.1016/j.ceramint.2015.10.106Search in Google Scholar

[11] H.S.Choi, G.S.Lim, J.H.Lee, Y.M.Jang, D.C.Yoo, J.Y.Lee, I.H.Choi: Met. Mater. Int.9 (2003) 293. 10.1007/BF03027049Search in Google Scholar

[12] J.H.Choi, J.Kim, S.J.Oh, D.Kim, Y.H.Kim, H.Chae, H.Kim: Met. Mater. Int.22 (2016) 723. 10.1007/s12540-016-5692-7Search in Google Scholar

[13] M.Nejati, M.R.Rahimipour, I.Mobasherpour: Ceram. Int.40 (2014) 4579. 10.1016/j.ceramint.2013.08.135Search in Google Scholar

[14] V.Mote, Y.Purushotham, B.Dole: J. Theor. Appl. Phys.6 (2012) 6. 10.1186/2251-7235-6-6Search in Google Scholar

[15] S.R.Kiahosseini, A.Afshar, M.M.Larijani, M.Yousefpour: J. Mater. Res.28 (2013) 2709. 10.1557/jmr.2013.241Search in Google Scholar

[16] S.R.Kiahosseini, A.Afshar, M.M.Larijani, M.Yousefpour: Appl. Surf. Sci.401 (2017) 172. 10.1016/j.apsusc.2017.01.022Search in Google Scholar

[17] K.D.Rogers, P.Daniels: Biomater.23 (2002) 2577. 10.1016/S0142-9612(01)00395-7Search in Google Scholar PubMed

[18] T.Hammer: Contrib. Plasma Phys.54 (2014) 187. 10.1002/ctpp.201310063Search in Google Scholar

[19] F.Tarasi, M.Medraj, A.Dolatabadi, J.Oberste-Berghaus, C.Moreau: J. Eur. Ceram. Soc.31 (2011) 2903. 10.1016/j.jeurceramsoc.2011.06.008Search in Google Scholar

[20] M.H.Foroushani, M.Shamanian, M.Salehi, F.Davar: Ceram. Int.42 (2016) 15868. 10.1016/j.ceramint.2016.07.057Search in Google Scholar

[21] D.Thirumalaikumarasamy, K.Shanmugam, V.Balasubramanian: J. Magnesium Alloys2 (2014) 140. 10.1016/j.jma.2014.05.002Search in Google Scholar

[22] D.Thirumalaikumarasamy, K.Shanmugam, V.Balasubramanian: Prog. Nat. Sci.22 (2012) 468. 10.1016/j.pnsc.2012.09.004Search in Google Scholar

[23] H.Dong, P.Y.Qi, X.Y.Li, R.J.Llewellyn: Mater. Sci. Eng. A431 (2006) 137. 10.1016/j.msea.2006.05.122Search in Google Scholar

[24] A.S.Dorcheh, R.N.Durham, M.C.Galetz: Sol. Energy Mater. Sol. Cells144 (2016) 109. 10.1016/j.solmat.2015.08.011Search in Google Scholar

[25] M.N.Baig, F.A.Khalid, F.N.Khan, K.Rehman: Ceram. Int.40 (2014) 4853. 10.1016/j.ceramint.2013.09.035Search in Google Scholar

[26] H.R.Bakhsheshi-Rad, E.Hamzeh, A.F.Ismail, M.Daroonparvar, M.Kasiri- Asgarani, S.Jabbarzare, M.Medraj: Ceram. Int.41 (2015) 15272. 10.1016/j.ceramint.2015.08.025Search in Google Scholar

[27] A.Portinha, V.Teixeira, J.Carneiro, J.Martins, M.F.Costa, R.Vassen, D.Stoever: Surf. Coat. Technol.195 (2005) 245. 10.1016/j.surfcoat.2004.07.094Search in Google Scholar

Received: 2016-10-30
Accepted: 2017-05-02
Published Online: 2017-07-31
Published in Print: 2017-08-11

© 2017, Carl Hanser Verlag, München

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111523/html
Scroll to top button