Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
-
Fei Wang
, Hua Yang , Yunchuan Zhang und Ruishan Li
Abstract
CuBi2O4 nanoparticles were prepared via a polyacrylamide gel route. Field-emission scanning electron microscopy observation shows that the particles are shaped like spheres and have an average particle size of ∼230 nm. Ultraviolet–visible diffuse reflectance spectroscopy reveals that the particles have a bandgap energy of 1.88 eV. The electrochemical performance of the sample was investigated by means of cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy in 2 M KOH, 6 M KOH, and 2 M NaOH electrolytes at different temperatures. It is demonstrated that the temperature has an important effect on the electrochemical performance of the sample, and relatively higher specific capacitance is observed at 45 °C, reaching 1 458 F g−1 in 2 M KOH electrolyte at a current density of 2 A g−1. In addition, the sample exhibits an increased capacitance in a higher-concentration electrolyte, but its charge–discharge cycling stability is decreased. Moreover, it is found that the sample exhibits relatively larger specific capacitance in KOH electrolyte than in NaOH electrolyte.
References
[1] P.Simon, Y.Gogotsi: Nat. Mater.7 (2008) 845–854. 10.1038/nmat2297Suche in Google Scholar PubMed
[2] M.Winter, R.J.Brodd: Chem. Rev.104 (2004) 4245–4269. 10.1021/cr040110eSuche in Google Scholar
[3] B.E.Conway: Electrochemical supercapacitors: scientific fundamentals and technological applications, Kluwer Academic, New York, USA (1999). 10.1007/978-1-4757-3058-6Suche in Google Scholar
[4] G.P.Wang, L.Zhang, J.J.Zhang: Chem. Soc. Rev.41 (2012) 797–828. 10.1039/C1CS15060JSuche in Google Scholar
[5] C.C.Hu, K.H.Chang, M.C.Lin, Y.T.Wu: Nano Lett.6 (2006) 2690–2695. 10.1021/nl061576aSuche in Google Scholar PubMed
[6] G.W.Yang, C.L.Xu, H.L.Li: Chem. Commun.48 (2008) 6537–6539. 10.1039/B815647FSuche in Google Scholar PubMed
[7] N.Henry, O.Mentre, J.C.Boivin, F.Abraham: Chem. Mater.13 (2001) 543–551. 10.1021/cm000509tSuche in Google Scholar
[8] K.Yoshii, T.Fukuda, H.Akahama, J.Kano, T.Kambe, N.Ikeda: Physica C471 (2011) 766–769. 10.1016/j.physc.2011.05.049Suche in Google Scholar
[9] V.M.Denisov, L.A.Irtyugo, L.T.Denisova, S.D.Kirik, L.G.Chumilina: Phys. Solid State54 (2012) 1943–1945. 10.1134/S1063783412090089Suche in Google Scholar
[10] J.Zhang, Y.Jiang: J. Mater. Sci.: Mater. Electron.26 (2015) 4308–4312. 10.1007/s10854-015-2983-6Suche in Google Scholar
[11] G.Sharma, Z.Zhao, P.Sarker, B.A.Nail, J.Wang, M.N.Huda, F.E.Osterloh: J. Mater. Chem. A4 (2016) 2936–2942. 10.1039/c5ta07040fSuche in Google Scholar
[12] X.Chen, Y.Dai, J.Guo: Mater. Lett.161 (2015) 251–254. 10.1016/j.matlet.2015.08.118Suche in Google Scholar
[13] S.P.Berglund, F.F.Abdi, P.Bogdanoff, A.Chemseddine, D.Friedrich, R.van de Krol: Chem. Mater.28 (2016) 4231–4242. 10.1021/acs.chemmater.6b00830Suche in Google Scholar
[14] M.Wang, J.Zai, X.Wei, W.Chen, N.Liang, M.Xu, R.Qi, X.Qian: CrystEngComm17 (2015) 4019–4025. 10.1039/c5ce00040 hSuche in Google Scholar
[15] L.Zhu, P.Basnet, S.R.Larson, L.P.Jones, J.Y.Howe, R.A.Tripp, Y.Zhao: Chemistry Select1 (2016) 1518–1524. 10.1002/slct.201600164Suche in Google Scholar
[16] Y.Nakabayashi, M.Nishikawa, Y.Nosaka: Electrochim. Acta125 (2014) 191–198. 10.1016/j.electacta.2014.01.088Suche in Google Scholar
[17] A.A.Ensafi, N.Ahmadi, B.Rezaei: J. Alloys Compd.652 (2015) 39–47. 10.1016/j.jallcom.2015.08.226Suche in Google Scholar
[18] Y.C.Zhang, H.Yang, W.P.Wang, H.M.Zhang, R.S.Li, X.X.Wang, R.C.Yu: J. Alloys Compd.684 (2016) 707–713. 10.1016/j.jallcom.2016.05.201Suche in Google Scholar
[19] Y.Zhang, Y.Xie, J.Li, G.Yang, T.Bai, J.Wang: J. Alloys Compd.580 (2013) 172–175. 10.1016/j.jallcom.2013.05.121Suche in Google Scholar
[20] R.Patil, S.Kelkar, R.Naphade, S.Ogale: J. Mater. Chem. A2 (2014) 3661–3668. 10.1039/c3ta14906dSuche in Google Scholar
[21] W.-D.Oha, S.-K.Lua, Z.Dong, T.-T.Lim: Nanoscale7 (2015) 8149–8158. 10.1039/c5nr01428jSuche in Google Scholar PubMed
[22] W.Liu, S.Chen, S.Zhang, W.Zhao, H.Zhang, X.Yu: J. Nanopart. Res.12 (2010) 1355–1366. 10.1007/s11051-009-9672-4Suche in Google Scholar
[23] M.Zhou, H.Yang, T.Xian, R.S.Li, H.M.Zhang, X.X.Wang: J. Hazard. Mater.289 (2015) 149–157. 10.1016/j.jhazmat.2015.02.054Suche in Google Scholar PubMed
[24] W.P.Wang, H.Yang, T.Xian, J.L.Jiang: Mater. Trans.53 (2012) 1586–1589. 10.2320/matertrans.M2012151Suche in Google Scholar
[25] V.Vivier, A.Regis, G.Sagon, J.Y.Nedelec, L.T.Yu, C.Cachet-Vivier: Electrochim. Acta46 (2001) 907–914. 10.1016/S0013-4686(00)00677-0Suche in Google Scholar
[26] V.D.Nithya, B.Hanitha, S.Surendran, D.Kalpana, R.Kalai Selvan: Ultrason. Sonochem.22 (2015) 300–310. 10.1016/j.ultsonch.2014.06.014Suche in Google Scholar PubMed
[27] Z.Khan, S.Bhattu, S.Haram, D.Khushalani: RSC Adv.4 (2014) 17378–17381. 10.1039/c4ra01273aSuche in Google Scholar
[28] F.Wang, H.Yang, H.M.Zhang, J.Y.Su, X.X.Wang: J. Electron. Mater.46 (2016) 182–187. 10.1007/s11664-016-4876-8Suche in Google Scholar
[29] V.Vivier, C.Cachet-Vivier, S.Mezaille, B.L.Wu, C.S.Cha, J.Y.Nedelec, M.Fedoroff, D.Michel, L.T.Yu: J. Electrochem. Soc.147 (2000) 4252–4262. 10.1149/1.1394049Suche in Google Scholar
[30] M.D.Stoller, S.J.Park, Y.W.Zhu, J.H.An, R.S.Ruoff: Nano Lett.8 (2008) 3498–3502. 10.1021/nl802558ySuche in Google Scholar PubMed
[31] T.P.Gujar, V.R.Shinde, C.D.Lokhande, S.-H.Han: J. Power Sources161 (2006) 1479–1485. 10.1016/j.jpowsour.2006.05.036Suche in Google Scholar
[32] K.B.Li, D.W.Shi, Z.Y.Cai, G.L.Zhang, Q.A.Huang, D.Liu, C.P.Yang: Electrochim. Acta174 (2015) 596–600. 10.1016/j.electacta.2015.06.008Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News