Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
-
Bo Dang
, Zengyun Jian und Junfeng Xu
Abstract
The effects of pouring temperature, the content of a rare earth (RE) metal modifier, and T6 heat treatment on the microstructure and mechanical properties of Al-25 % Si alloy were investigated. The results show that for the unmodified alloy, the morphology of primary Si was transformed from coarse polygons and platelets to fine polyhedral, and the average size decreased with increasing pouring temperature. The primary Si exhibited a small blocky morphology with an average size of 47 μm at an optimal content of 1.2 % RE. The tensile strength and elongation were enhanced by the addition of RE followed by the T6 heat treatment, and the maximum tensile strength and elongation (208.3 MPa and 1.01 %) were obtained for the sample modified with 1.2 % RE followed by the T6 heat treatment.
References
[1] T.R.Prabhu: Acta Metall. Sin. (Engl. Lett.)28 (2015) 909. 10.1007/s40195-015-0275-zSuche in Google Scholar
[2] M.Franco, T.H.Krishna, A.M.Pillai, A.Rajendra, A.K.Sharma: Acta Metall. Sin. (Engl. Lett.)26 (2013) 647. 10.1007/s40195-013-0091-2Suche in Google Scholar
[3] D.Q.Wan: Trans. Nonferrous Met. Soc. China22 (2012) 1051. 10.1016/s1003-6326(11)61282-xSuche in Google Scholar
[4] D.Wang, C.S.He, H.Wang, X.Zhao, L.Zuo: Acta. Metall. Sin. (Engl. Lett.)27 (2014) 245. 10.1007/s40195-014-0052-4Suche in Google Scholar
[5] A.M.Samuel, G.H.Garza-Elizondo, H.W.Doty, F.H.Samuel: Mater. Des.80 (2015) 99. 10.1016/j.matdes.2015.05.013Suche in Google Scholar
[6] Q.L.Li, T.D.Xia, Y.F.Lan, P.F.Li, L.Fan: Mater. Sci. Eng.A588 (2013) 97. 10.1016/j.msea.2013.09.017Suche in Google Scholar
[7] W.X.Shi, B.Gao, G.F.Tu, S.W.Li: J. Alloys Compd.508 (2010) 480. 10.1016/j.jallcom.2010.08.098Suche in Google Scholar
[8] W.X.Shi, B.Gao, G.F.Tu, S.W.Li, Y.Hao, F.X.Yu: J. Rare Earths28 (2010) 367. 10.1016/s1002-0721(10)60363-8Suche in Google Scholar
[9] J.Y.Chang, G.H.Kim, I.G.Moon, C.S.Choi: Scr. Mater.39 (1998) 307. 10.1016/s1359-6462(98)00168-7Suche in Google Scholar
[10] W.M.Jiang, Z.T.Fan, Y.C.Dai, C.Li: Mater. Sci. Eng. A597 (2014) 237. 10.1016/j.msea.2014.01.009Suche in Google Scholar
[11] S.A.Al Kahtani, H.W.Doty, F.H.Samuel: Int. J. Cast Metal. Res.27 (2014) 38. 10.1179/1743133613y.0000000077Suche in Google Scholar
[12] P.A.Rometsch, Y.Zhang, S.Knight: Trans. Nonferrous Met. Soc. China24 (2014) 2003. 10.1016/s1003-6326(14)63306-9Suche in Google Scholar
[13] H.M.A.Azmah, C.S.Chang, C.O.Khang: Mater. Des.32 (2011) 2334. 10.1016/j.matdes.2010.12.040Suche in Google Scholar
[14] A.K.Gupta, B.K.Prasad, R.K.Pajnoo, S.Das: Trans. Nonferrous Met. Soc. China22 (2012) 1041. 10.1016/s1003-6326(11)61281-8Suche in Google Scholar
[15] C.W.Liao, J.C.Chen, Y.L.Li, H.Chen, C.X.Pan: Prog. Nat. Sci.-Mater.24 (2014) 87. 10.1016/j.pnsc.2014.03.002Suche in Google Scholar
[16] H.F.C.Robles, M.B.Djurdjevic, W.T.Kierkus, J.H.Sokolowski: Mater. Sci. Eng. A396 (2005) 271. 10.1016/j.msea.2005.01.024Suche in Google Scholar
[17] C.L.Xu, Q.C.Jiang: Mater. Sci. Eng. A437 (2006) 451. 10.1016/j.msea.2006.07.088Suche in Google Scholar
[18] Z.W.Chen, W.Q.Jie, R.J.Zhang: Mater. Lett.59 (2005) 2183. 10.1016/j.matlet.2004.08.047Suche in Google Scholar
[19] M.C.Dahlborg, P.S.Popel, M.J.Kramer, M.Besser, J.R.Morris, U.Dahlborg: J. Alloys Compd.550 (2013) 9. 10.1016/j.jallcom.2012.09.086Suche in Google Scholar
[20] X.R.Liu, Y.D.Zhang, B.Beausir, F.Liu, C.Esling, F.X.Yu: Acta Mater.97 (2015) 338. 10.1016/j.actamat.2015.06.041Suche in Google Scholar
[21] Y.H.Zhang, X.C.Miao, Z.Y.Shen, Q.Y.Han, C.J.Song, Q.J.Zhai: Acta Mater.97 (2015) 357. 10.1016/j.actamat.2015.07.002Suche in Google Scholar
[22] J.H.Li, X.D.Wang, T.H.Ludwig, Y.Teunekawa, L.Arnberg, J.Z.Jiang, P.Schumacher: Acta Mater.84 (2015) 153. 10.1016/j.actamat.2014.10.064Suche in Google Scholar
[23] U.Patakham, J.Kajornchaiyakul, C.Limmaneevichitr: J. Alloys Compd.542 (2012) 177. 10.1016/j.jallcom.2012.07.018Suche in Google Scholar
[24] S.Hedge, K.N.Prabhu: J. Mater. Sci.43 (2008) 3009. 10.1007/s10853-008-2505-5Suche in Google Scholar
[25] D.X.Yang, X.Y.Li, D.Y.He, H.Huang: Mater. Sci. Eng. A561 (2013) 226. 10.1016/j.msea.2012.11.002Suche in Google Scholar
[26] M.F.Kilicaslan, W.R.Lee, T.H.Lee, Y.Sohn, S.J.Hong: Mater. Lett.71 (2012) 164. 10.1016/j.matlet.2011.12.050Suche in Google Scholar
[27] M.F.Kilicaslan: J. Alloys Compd.606 (2014) 86. 10.1016/j.jallcom.2014.04.020Suche in Google Scholar
[28] F.Y.Cao, Y.D.Jia, K.G.Prashanth, P.Ma, J.S.Liu, S.Scudino, F.Huang, J.Eckert, J.F.Sun: Mater. Des.74 (2015) 150. 10.1016/j.matdes.2015.03.008Suche in Google Scholar
[29] D.K.Dwivedi, A.Sharma, T.V.Rajan: Mater. Manuf. Process.20 (2005) 777. 10.1081/amp-200055138Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News