Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
-
Dong Xiang
, Lei Wang , Yuhao Tang , Christopher J. Hill , Biqiong Chen und Eileen Harkin-Jones
Abstract
A comparative study of unary and binary carbon nanofiller reinforced high density polyethylene (HDPE) composites with 4 wt.% nanofillers was carried out in order to assess the reinforcement effect and synergy of carbon nanofillers with different dimensions. Rheology and resistivity tests indicate that the relative effectiveness of generating rheological and conductive networks is as follows: multi-walled carbon nanotubes (MWCNTs) > carbon black (CB) > graphene nanoplatelets (GNPs), while the reinforcement effect in modulus is: GNPs > MWCNTs > CB, at the same loading. The resistivity of all the HDPE/CB/MWCNT composites is quite close to the that of HDPE/MWCNT composites, indicating CB may be a good replacement for MWCNTs considering the relatively low cost of CB. A synergistic effect in modulus is observed in the HDPE/GNP/MWCNT and HDPE/CB/MWCNT composites due to the formation of nanofiller–polymer–nanofiller network structures.
References
[1] B.Mayoral, T.McNally: Macromol. Mater. Eng.299 (2014) 609. 10.1002/mame.201300158Suche in Google Scholar
[2] B.Mayoral, G.Garrett, T.McNally: Macromol. Mater. Eng.299 (2014) 748. 10.1002/mame.201300172Suche in Google Scholar
[3] D.Xiang, E.Harkin-Jones, D.Linton: RSC Adv.4 (2014) 44130. 10.1039/c4ra07166bSuche in Google Scholar
[4] C.Vallés, A.M.Abdelkader, R.J.Young, I.A.Kinloch: Faraday Discuss.173 (2014) 379. 10.1039/c4fd00112eSuche in Google Scholar PubMed
[5] D.V.Brković, V.V.Kovavčević, G.B.Sretenović, M.M.Kuraica, N.P.Trišović, L.Valentini, A.D.Marinković, J.M.Kenny, P.S.Uskoković: J. Phys. Chem. Solids75 (2014) 858. 10.1016/j.jpcs.2014.03.009Suche in Google Scholar
[6] D.Xiang, E.Harkin-Jones, D.Linton, P.Martin: J. Appl. Polym. Sci.132 (2015) 42665. 10.1002/APP.42665Suche in Google Scholar
[7] H.Deng, R.Zhang, E.Bilotti, J.Loos, T.Peijs: J. Appl. Polym. Sci.113 (2009) 742. 10.1002/app.29624Suche in Google Scholar
[8] H.Deng, T.Skipa, R.Zhang, D.Lellinger, E.Bilotti, I.Alig, T.Peijs: Polymer50 (2009) 3747. 10.1016/j.polymer.2009.05.016Suche in Google Scholar
[9] D.Xiang, E.Harkin-Jones, D.Linton: RSC Adv.5 (2015) 47555. 10.1039/c5ra06075cSuche in Google Scholar
[10] M.Morcom, K.Atkinson, G.P.Simon: Polymer51 (2010) 3540. 10.1016/j.polymer.2010.04.053Suche in Google Scholar
[11] P.Verge, S.Benali, L.Bonnaud, A.Minoia, M.Mainil, R.Lazzaroni, P.Dubois: Eur. Polym. J.48 (2012) 677. 10.1016/j.eurpolymj.2012.01.002Suche in Google Scholar
[12] Q.Yuan, S.A.Bateman, D.Wu: J. Thermoplast. Compos.23 (2010) 459. 10.1177/0892705709349318Suche in Google Scholar
[13] X.Jiang, L.T.Drzal: Compos. Part A: Appl. Sci. Manuf.42 (2011) 1840. 10.1016/j.compositesa.2011.08.011Suche in Google Scholar
[14] L.Wang, J.Hong, G.Chen: Polym. Eng. Sci.50 (2010) 2176. 10.1002/pen.21751Suche in Google Scholar
[15] N.K.Srivastava, R.M.Mehra: J. Appl. Polym. Sci.109 (2008) 3991. 10.1002/app.28499Suche in Google Scholar
[16] B.J.Kim, J.H.Byun, S.J.Park: Bull. Korean Chem. Soc.31 (2010) 2261. 10.5012/bkcs.2010.31.8.2261Suche in Google Scholar
[17] G.Haznedar, S.Cravanzola, M.Zanetti, D.Scarano, A.Zecchina, F.Cesano: Mater. Chem. Phys.143 (2013) 47. 10.1016/j.matchemphys.2013.08.008Suche in Google Scholar
[18] J.Du, L.Zhao, Y.Zeng, L.Zhang, F.Li, P.Liu, C.Liu: Carbon49 (2011) 1094. 10.1016/j.carbon.2010.11.013Suche in Google Scholar
[19] Z.Zhou, S.Wang, Y.Zhang, Y.Zhang: J. Appl. Polym. Sci.102 (2006) 4823. 10.1002/app.24722Suche in Google Scholar
[20] M.Wen, X.Sun, L.Su, J.Shen, J.Li, S.Guo: Polymer53 (2012) 1602. 10.1016/j.polymer.2012.02.003Suche in Google Scholar
[21] X.Wang, H.Yang, L.Song, Y.Hu, W.Xing, H.Lu: Compos. Sci. Technol.72 (2011) 1. 10.1016/j.compscitech.2011.05.007Suche in Google Scholar
[22] M.Saatchi, A.Shojaei: Mater. Sci. Eng. A Struct. Mater.528 (2011) 7161. 10.1016/j.msea.2011.05.089Suche in Google Scholar
[23] B.Wunderlich: Macromolecular Physics, Vol. 3. Crystal Melting, Academic Press, New York, USA (1980).Suche in Google Scholar
[24] S.Chatterjee, F.Nüesch, B.T.T.Chu: Nanotechnology22 (2011) 275714. 10.1088/0957-4484/22/27/275714Suche in Google Scholar PubMed
[25] K.Kalaitzidou, H.Fukushima, L.T.Drzal: Compos. Sci. Technol.67 (2007) 2045. 10.1016/j.compscitech.2006.11.014Suche in Google Scholar
[26] J.Yu, L.Zhang, M.Rogunova, J.Summers, A.Hiltner, E.Baer: J. Appl. Polym. Sci.98 (2005) 1799. 10.1002/app.22238Suche in Google Scholar
[27] K.Kalaitzidou, H.Fukushima, P.Askeland, L.T.Drzal: J. Mater. Sci.43 (2008) 2895. 10.1007/s10853-007-1876-3Suche in Google Scholar
[28] R.Haggenmueller, J.E.Fischer, K.I.Winey: Macromolecules39 (2006) 2964. 10.1021/ma0527698Suche in Google Scholar
[29] B.Li, W.H.Zhong: J. Mater. Sci.46 (2011) 5595. 10.1007/s10853-011-5572-ySuche in Google Scholar
[30] E.Nilsson, H.Oxfall, W.Wandelt, R.Rychwalski, B.Hagström: J. Appl. Polym. Sci.130 (2013) 2579. 10.1002/app.39480Suche in Google Scholar
[31] C.Da Silva, L.Canto, L.Visconti: Chem. Chem. Technol.4 (2010) 61.10.23939/chcht04.01.061Suche in Google Scholar
[32] J.Affdl, J.Kardos: J. Polym. Eng. Sci.16 (1976) 344. 10.1002/pen.760160512Suche in Google Scholar
[33] B.Chen, J.R.Evans: Macromolecules39 (2006) 1790. 10.1021/ma0522460Suche in Google Scholar
[34] D.Das, B.K.Satapathy: Mater. Chem. Phys.147 (2014) 127. 10.1016/j.matchemphys.2014.04.019Suche in Google Scholar
[35] F.Du, R.C.Scogna, W.Zhou, S.Brand, J.E.Fischer, K.I.Winey: Macromolecules37 (2004) 9048. 10.1021/ma049164 gSuche in Google Scholar
[36] W.Gao, Y.Zheng, J.Shen, S.Guo: ACS Appl. Mater. Interfaces7 (2015) 1541. 10.1021/am506773cSuche in Google Scholar PubMed
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News