Home A general method towards transition metal monoboride nanopowders
Article
Licensed
Unlicensed Requires Authentication

A general method towards transition metal monoboride nanopowders

  • Weixiao Cao , Ya'nan Wei , Xin Meng , Yuexia Ji and Songlin Ran
Published/Copyright: March 31, 2017
Become an author with De Gruyter Brill

Abstract

The borothermal reduction of metal oxides in molten salts is reported as a general method towards transition metal monoboride nanopowders. Crystallized CrB powders with average particle sizes of 40 – 50 nm were synthesized at a lowest temperature of 800 °C. The presence of molten salts greatly inhibited the formation of impurities and the grain growth of CrB particles. NbB and TaB powders were also successfully synthesized by the same method at 1 000 °C and 1 100 °C, respectively.


*Correspondence address, Dr. Songlin Ran, School of Materials Science and Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan 243002, P. R. China, Tel.: +86 555 2311870, Fax: +86 555 2311570, E-mail:

References

[1] W.G.Fahrenholtz, J.Binner, J.Zou: J. Mater. Res.31 (2016) 2757. 10.1557/jmr.2016.210Search in Google Scholar

[2] W.G.Fahrenholtz, G.E.Hilmas, I.G.Talmy, J.A.Zaykoski: J. Am. Ceram. Soc.90 (2007) 1347. 10.1111/j.1551-2916.2007.01583.xSearch in Google Scholar

[3] J.Zou, J.Liu, G.-J.Zhang, S.Huang, J.Vleugels, O.Van der Biest, J.Z.Shen: Acta Mater.72 (2014) 167. 10.1016/j.actamat.2014.03.054Search in Google Scholar

[4] J.Zou, J.Liu, J.Zhao, G.-J.Zhang, S.Huang, B.Qian, J.Vleugels, O.Van der Biest, J.Z.Shen: Chem. Eng. J.249 (2014) 93. 10.1016/j.cej.2014.03.089Search in Google Scholar

[5] B.Huang, Y.-H.Duan, W.-C.Hu, Y.Sun, S.Chen: Ceram. Int.41 (2015) 6831. 10.1016/j.ceramint.2015.01.132Search in Google Scholar

[6] L.Han, S.Wang, J.Zhu, S.Han, W.Li, B.Chen, X.Wang, X.Yu, B.Liu, R.Zhang, Y.Long, J.Cheng, J.Zhang, Y.Zhao, C.Jin: Appl. Phys. Lett.106 (2015) 221902. 10.1063/1.4922147Search in Google Scholar

[7] R.-Y.Li, Y.-H.Duan: Philos. Mag.96 (2016) 972. 10.1080/14786435.2016.1149247Search in Google Scholar

[8] J.Zhang, W.Ke, W.Ji, Z.Fan, W.Wang, Z.Fu: Mater. Sci. Eng. A648 (2015) 158. 10.1016/j.msea.2015.09.067Search in Google Scholar

[9] F.-C.Wang, Z.-H.Zhang, J.Luo, C.-C.Huang, S.-K.Lee: Compos. Sci. Technol.69 (2009) 2682. 10.1016/j.compscitech.2009.08.010Search in Google Scholar

[10] S.Ran, S.G.Huang, O.Van der Biest, J.Vleugels: J. Eur. Ceram. Soc.32 (2012) 2537. 10.1016/j.jeurceramsoc.2012.02.035Search in Google Scholar

[11] X.G.Wang, W.M.Guo, Y.M.Kan, G.J.Zhang: Adv. Eng. Mater.12 (2010) 893. 10.1002/adem.201000012Search in Google Scholar

[12] C.L.Yeh, W.H.Chen: J. Alloys Compd.420 (2006) 111. 10.1016/j.jallcom.2005.10.031Search in Google Scholar

[13] Y.Hiroki, M.Yoshinaka, K.Hirota, O.Yamaguchi: J. Jpn. Soc. Powder Powder Metall.50 (2003) 367. 10.2497/jjspm.50.367Search in Google Scholar

[14] C.L.Yeh, H.J.Wang: J. Alloys Compd.509 (2011) 3257. 10.1016/j.jallcom.2010.12.004Search in Google Scholar

[15] K.Iizumi, K.Kudaka, D.Maezawa, T.Sasaki: J. Ceram. Soc. Jpn.107 (1999) 491. 10.2109/jcersj.107.491Search in Google Scholar

[16] J.Ma, Y.Gu, L.Shi, L.Chen, Z.Yang, Y.Qian: Chem. Phys. Lett.381 (2003) 194. 10.1016/j.cplett.2003.09.128Search in Google Scholar

[17] L.Qin, X.Zhang, Y.Liang, E.Zhang, H.Gao, Z.Zhang: J. Mater. Sci.41 (2006) 7617. 10.1007/s10853-006-0853-6Search in Google Scholar

[18] S.A.Hassanzadeh-Tabrizi, D.Davoodi, A.A.Beykzadeh, S.Salahshour: Ceram. Int.42 (2016) 1812. 10.1016/j.ceramint.2015.09.144Search in Google Scholar

[19] Menaka, B. Kumar, S.Kumar, A.K.Ganguli: J. Solid State Chem.200 (2013) 117. 10.1016/j.jssc.2013.01.005Search in Google Scholar

[20] S.Ran, H.Sun, Y.N.Wei, D.Wang, N.Zhou, Q.Huang: J. Am. Ceram. Soc.97 (2014) 3384. 10.1111/jace.13298Search in Google Scholar

Received: 2016-11-25
Accepted: 2017-01-17
Published Online: 2017-03-31
Published in Print: 2017-04-13

© 2017, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111484/html
Scroll to top button