Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
-
Ferhat Yildirim
, Mustafa Aydin und Ahmet Avci
Abstract
Three dimensional (3D) glass fiber epoxy composites reinforced with nano-SiO2 particles at ratios of 0.5 wt.%, 1 wt.%, 2 wt.% and 3 wt.%, were manufactured using the vacuum infusion method to improve the mechanical properties. Differential scanning calorimetry, thermo-gravimetric analysis, particle dispersion detection by color measurement, scanning electron microscopy, energy dispersive X-ray spectroscopy mapping, three point bending and tensile testing were performed to characterize the nano-particle-reinforced 3D composites. Mapping and color measurement revealed good dispersion of the nano-particles. The mechanical tests showed improvement rates of 52 % and 64 % respectively on warp and weft directions compared with the non-reinforced 3D composite. The tensile strength of the nano-SiO2 reinforced 3D woven composites also increased to 6 % and 10 % according to the warp and weft directions compared with the non-reinforced 3D composite.
References
[1] C.Q.Zhao, D.S.Li, T.Q.Ge, L.Jiang, N.Jiang: Mater. Des.56 (2014) 50–59. 10.1016/j.matdes.2013.10.083Suche in Google Scholar
[2] H.Fan, F.Sun, LYang, F.Jin, D.Zhao: Compos. Sci. Technol.87 (2013) 142–148. 10.1016/j.compscitech.2013.07.028Suche in Google Scholar
[3] D.S.Li, C.Q.Zhao, L.Jiang, N.Jiang: Compos. Struct.111 (2014) 56–65. 10.1016/j.compstruct.2013.12.026Suche in Google Scholar
[4] M.Li, S.Wang, Z.Zhang, B.Wu: Appl. Compos. Mater.16 (2009) 1–14. 10.1007/s10443-008-9072-4Suche in Google Scholar
[5] M.Sadighi, S.A.Hosseini: Compos. Part B55 (2013) 158–166. 10.1016/j.compositesb.2013.06.030Suche in Google Scholar
[6] H.Fan, L.Zhao, H.Chen, N.Kuang, C.Yang, S.Huang, Y.Jiang: Compos. Sci. Technol.72 (2012) 1338–1343. 10.1016/j.compscitech.2012.04.017Suche in Google Scholar
[7] H.Fan, Q.Zhou, W.Yang, Z.Jingjing: Compos. Part B41 (2010) 686–692. 10.1016/j.compositesb.2010.07.004Suche in Google Scholar
[8] K.Bilişik, G.Yolaçan: Dokuma E-Cam/Polyester Nano Silika Kompozitlerin Eğilme Özellikleri. XIIIth International İzmir Textile and Apparel Symposium, Antalya, Turkey (2014).Suche in Google Scholar
[9] R.K.Nayak, A.Dash, B.C.Ray: Procedia Mater. Sci.2014; 6: 1359–1364. 10.1016/j.mspro.2014.07.115Suche in Google Scholar
[10] V.C.S.Chandrasekaran, S.G.Advani, M.H.Santare: Carbon48 (2010) 3692–3699. 10.1016/j.carbon.2010.06.010Suche in Google Scholar
[11] N.A.Siddiqui, R.S.C.Woo, J.K.Kim, C.C.K.Leung, A.Munir: Compos. Part A38 (2006) 449–460. 10.1016/j.compositesa.2006.03.001Suche in Google Scholar
[12] Y.Zhou, F.Pervin, V.K.Rangari, S.Jeelani: Mater. Sci. Eng.A426 (2006) 221–228. 10.1016/j.msea.2006.04.031Suche in Google Scholar
[13] F.H.Gojny, M.H.G.Wichmann, B.Fiedler, W.Bauhofer, K.Schulte: Compos. Part A36 (2005) 1525–35. 10.1016/j.compositesa.2005.02.007Suche in Google Scholar
[14] E.Beyakrova, E.T.Thostenson, A.Yu, H.Kim, J.Gao, J.Tang: Langmuir23 (2007) 3970–3974. 10.1021/la062743pSuche in Google Scholar
[15] R.Zhao, W.Luo: Mater. Sci. Eng. A483 (2008) 313–315. 10.1016/j.msea.2006.08.151Suche in Google Scholar
[16] C.Chen, R.S.Justice, D.W.Schaefer, J.W.Baur: Polymer49 (2008) 3805–3815. 10.1016/j.polymer.2008.06.023Suche in Google Scholar
[17] B.B.Johnsen, A.J.Kinloch, R.D.Mohammed, A.C.Taylor, S.Sprenger: Polymer48 (2007) 530–541. 10.1016/j.polymer.2006.11.038Suche in Google Scholar
[18] T.H.Hsieh, A.J.Kinloch, K.Masania, A.C.Taylor, S.Sprenger: Polymer51 (2010) 6284–6294. 10.1016/j.polymer.2010.10.048Suche in Google Scholar
[19] H.Fan, W.Yang, Q.Zhou: Compos. Part B42 (2011) 1151–1156. 10.1016/j.compositesb.2011.03.008Suche in Google Scholar
[20] A.S.Vaidya, U.K.Vaidya, N.Uddin: Mater. Sci. Eng. A472 (2008) 52–58. 10.1016/j.msea.2007.03.064Suche in Google Scholar
[21] A.W.Van Vuure, J.A.Ivens, I.Verpoest: Compos. Part A31 (2000) 671–680. 10.1016/S1359–835X(00)00017–8Suche in Google Scholar
[22] J.Zheng, L.Zhao, H.Fan: Compos. Part B43 (2012) 1516–1522. 10.1016/j.compositesb.2011.08.034Suche in Google Scholar
[23] A.Farrah, M.Jaafar, S.Palaniandy, A.K.Azizi: Compos. Sci. Technol.68 (2008) 346–353. 10.1016/j.compscitech.2007.07.015Suche in Google Scholar
[24] J.Li, Z.Wu, C.Huang, L.Li: Compos. Sci. Technol.104 (2014) 81–88. 10.1016/j.compscitech.2014.09.007Suche in Google Scholar
[25] Y.X.Zhou, P.X.Wu, Z.Y.Cheng, J.Ingram, S.Jeelani: eXPRESS Polym. Lett.2 (2008) 40–48. 10.3144/expresspolymlett.2008.6Suche in Google Scholar
[26] A.Patra, N.Mitra: Compos. Sci. Technol.101 (2014) 94–101. 10.1016/j.compscitech.2014.07.006Suche in Google Scholar
[27] N.A.Siddiqui, M.L.Sham, B.Z.Tang, A.Munir, J.K.Kim: Compos. Part A40 (2009) 1606–1614. 10.1016/j.compositesa.2009.07.005Suche in Google Scholar
[28] C.Fernandez, C.Medina, G.Pincheira, C.Canales, P.Flores: Compos. Part B55 (2013) 421–425. 10.1016/j.compositesb.2013.07.010Suche in Google Scholar
[29] S.Ülkü, B.Korkmaz: Farklı Kompozisyonlardaki Polyesterin Mekanik Özelliklerinin Yapıya Bağlı Olarak Deneysel ve Teorik Olarak İncelenmesi, Balıkesir Symposium, Turkey (1988).Suche in Google Scholar
[30] F.H.Gojny, M.H.G.Wichmann, U.Köpke, B.Fiedler, K.Schulte: Compos. Sci. Technol.64 (2004) 2363–2371. 10.1016/j.compscitech.2004.04.002Suche in Google Scholar
[31] Y.Zhou, F.Pervin, L.Lewis, S.Jeelani: Mater. Sci. Eng. A475 (2007) 157–165. 10.1016/j.msea.2007.04.043Suche in Google Scholar
[32] L.Liu, H.D.Wagner: Compos. Sci. Technol.65 (2005) 1861–1868. 10.1016/j.compscitech.2005.04.002Suche in Google Scholar
[33] M.Nadler, J.Werner, T.Mahrholz, U.Riedel, W.Hufenbach: Compos. Part A40 (2009) 932–937. 10.1016/j.compositesa.2009.04.021Suche in Google Scholar
[34] M.W.Hyer: Stress Analysis of Fiber Reinforced Composite Materials, The McGraw-Hill Companies Inc., USA (1998).Suche in Google Scholar
[35] ASTM D2584: Standard test method for ignition loss of cured reinforced resins, Annual Book of ASTM standards, Vol. 8, American Society for Testing and Materials, Philadelphia, (USA) (1968) 328–329.Suche in Google Scholar
[36] F.H.Abdalla, M.H.Megat, M.S.Sapuan, B.B.Sahari: J. Eng. Appl. Sci.4 (2008) 7–11.Suche in Google Scholar
[37] S.Y.Binshan, A.L.Svenson, C.B.Lawrence: Composites26 (1995) 725–731. 10.1016/0010-4361(95)91140-ZSuche in Google Scholar
[38] R.Whitacre, A.Amiri, C.Ulven: Ind. Crops Prod.77 (2015) 232–238. 10.1016/j.indcrop.2015.08.056Suche in Google Scholar
[39] L.A.Pothan, S.Thomas, J.George: Tensile and Impact Properties of Banana Fiber/Glass Fiber Hybrid Polyester Composites, 12th Int. Conf. Composite Materials, Paris, France (1999) 1267.Suche in Google Scholar
[40] S.Mishra, A.K.Mohanty, L.T.Drzal, M.Misra, S.Parija, S.K.Nayak, S.S.Tripathy: Compos. Sci. Technol.63 (2003) 1377–1385. 10.1016/S0266–3538(03)00084–8Suche in Google Scholar
[41] R.Velmurugan, V.Manikandan: Indian. J. Eng. Mater. Sci.12 (2005) 563–570. URL: http://nopr.niscair.res.in/handle/123456789/8464Suche in Google Scholar
[42] S.P.Priya, S.K.Rai: J. Ind. Text.35 (2006) 217–226. 10.1177/1528083706055754Suche in Google Scholar
[43] I.M.Daniel, O.Ishai: Engineering Mechanics of Composite Materials, Oxford University Press, 2nd Ed., New York, USA (2006).Suche in Google Scholar
[44] H.N.Emady, M.Wittman, S.Koynov, W.G.Borghard, F.J.Muzzio, B.J.Glasser, A.M.Cuitino: Powder Technol.286 (2015) 392–400. 10.1016/j.powtec.2015.07.050Suche in Google Scholar
[45] S.Koynov, Y.Wang, A.Redere, P.Amin, H.N.Emady, F.J.Muzzio, B.J.Glasser: Powder Technol.292 (2016) 298–306. 10.1016/j.powtec.2016.01.039Suche in Google Scholar
[46] B.D.Mattos, O.J.Rojas, W.L.E.Magalhães: Powder Technol.301 (2016) 25–64. 10.1016/j.powtec.2016.05.052Suche in Google Scholar
[47] http://mepteknik.com/bg/assets/images/kkilavuz/RENK%20OLCUM%20CIHAZI%20KULLANMA%20KILAVUZU.pdfSuche in Google Scholar
[48] http://www.horiba.com/fileadmin/uploads/Scientific/Documents/PSA/Webinar_Slides/TR016.pdfSuche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News