Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
-
Kartik Prasad
, Vikas Kumar , Kota Bhanu Sankara Rao und Mahadevan Sundararaman
Abstract
The effects of temperature and strain rate on the tensile properties of Timetal 834 near-α titanium alloy and alloy 834 without silicon were examined in the temperature range of 250 °C to 600 °C, employing strain rates in the range of 6.67 × 10−6 s−1 to 6.67 × 10−3 s−1. Manifestations of dynamic strain aging such as serrated flow, plateaus in the variations of 0.2 % yield strength and ultimate tensile strength, peak in strain hardening exponent with temperature and negative strain rate sensitivity were observed in both the alloys. Serration maps in terms of strain rate versus temperature are presented for both the alloys. The activation energy for serrated flow was determined in both the alloys by employing various methodologies mentioned in the literature. Analysis of the results suggested that addition of Si leads to increased severity of dynamic strain aging.
References
[1] D.F.Neal, in: P.Lacombe, R.Tricot, G.Beranger (Eds.), Proc. 6th World Conference on Titanium, Cannes, France (1988) 253–258.Suche in Google Scholar
[2] G.Lütjering, J.C.Williams: Titanium, 2nd Ed., Springer, Berlin (2007).Suche in Google Scholar
[3] N.Singh, V.Singh: Metall. Mater. Trans. A30 (1999) 2547. 10.1007/s11661-999-0263-xSuche in Google Scholar
[4] K.Prasad, V.K.Varma: Mater. Sci. Eng. A486 (2008) 158. 10.1016/j.msea.2007.09.020Suche in Google Scholar
[5] K.Prasad, S.V.Kamat: Mater. Sci. Eng. A490 (2008) 477. 10.1016/j.msea.2008.01.005Suche in Google Scholar
[6] K.Prasad, R.Sarkar, P.Ghosal, V.K.Varma: Mater. Sci. Eng.A494 (2008) 227. 10.1016/j.msea.2008.04.025Suche in Google Scholar
[7] K.Prasad, V.Kumar: Mater. Des.31 (2010) 2716. 10.1016/j.matdes.2010.01.031Suche in Google Scholar
[8] K.Prasad, R.Sarkar, V.Kumar, K.B.S.Rao, M.Sundararaman: Mater. Sci. Eng. A662 (2016) 373. 10.1016/j.msea.2016.03.079Suche in Google Scholar
[9] K.Prasad, S.Abhaya, G.Amarendra, V.Kumar, K.V.Rajulapati, K.B.S.Rao: Eng. Fract. Mech.102 (2013) 194. 10.1016/j.engfracmech.2013.02.017Suche in Google Scholar
[10] K.Prasad, V.Kumar, K.B.S.Rao, M.Sundararaman: Metall. Mater. Trans. A47 (2016) 3713. 10.1007/s11661-016-3482-ySuche in Google Scholar
[11] K.Prasad, R.Sarkar, K.B.S.Rao, M.Sundararaman: Metall. Mater. Trans. A47 (2016) 4904. 10.1007/s11661-016-3670-9Suche in Google Scholar
[12] K.Prasad, S.Amrithapandian, B.K.Panigrahi, V.Kumar, K.B.S.Rao, M.Sundararaman: Mater. Sci. Eng. A638 (2015) 90. 10.1016/j.msea.2015.04.060Suche in Google Scholar
[13] P.G.McCormick: Acta Metall.20 (1972) 351. 10.1016/0001-6160(72)90028-4Suche in Google Scholar
[14] P.Rodriguez: Bull. Mater. Sci.6 (1984) 653. 10.1007/BF02743993Suche in Google Scholar
[15] K.W.Qian, R.E.Reed-Hill: Acta Metall.31 (1983) 87. 10.1016/0001-6160(83)90067-6Suche in Google Scholar
[16] E.Pink, A.Grinberg: Acta Metall.30 (1982) 2153. 10.1016/0001-6160(82)90136-5Suche in Google Scholar
[17] ASTM Standard E 8/8M-11: Standard test methods for tension testing of metallic materials. In: Annual book of ASTM standards, vol. 3.01, ASTM International, West Conshohocken (PA), USA (2012).Suche in Google Scholar
[18] G.E.Dieter: Mechanical Metallurgy, McGraw-Hill Book Co., London, UK (1988).Suche in Google Scholar
[19] J.M.Robinson, M.P.Shaw: Int. Mater. Rev.39 (1994) 113. 10.1179/imr.1994.39.3.113Suche in Google Scholar
[20] D.F.Neal, S.PFox, in: F.H.Froes, I.Caplan (Eds.), Titanium 92 Science and Technology, The Minerals, Metals & Materials Society (1993) 287–294.Suche in Google Scholar
[21] R.W.Hayes, W.C.Hayes: Acta Metall.32 (1984) 259. 10.1016/0001-6160(84)90054-3Suche in Google Scholar
[22] V.D.Beukel: Acta Metall.28 (1980) 965. 10.1016/0001-6160(80)90114-5Suche in Google Scholar
[23] M.Doner, H.Conrad: Metall. Trans.4 (1973) 2809. 10.1007/BF02644581Suche in Google Scholar
[24] H.Conrad: Prog. Mater. Sci.26 (1981) 123. 10.1016/0079-6425(81)9001-3Suche in Google Scholar
[25] M.R.Winstone, R.D.Rawlings, D.R.F.West: J. Less Common Metals31 (1973) 143. 10.1016/0022-5088(73)90137-9Suche in Google Scholar
[26] R.E.Smallman, R.J.Bishop: Modern Physical Metallurgy and Materials Engineering, 6th Ed., ButterworthHeinemann, UK (1999) 219.10.1016/B978-075064564-5/50013-6Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News