Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
-
Bao-sheng Liu
, Ya-fei Kuang , Da-qing Fang , Yue-sheng Chai und Yue-zhong Zhang
Abstract
In petroleum drilling engineering, materials with high strength and rapid degradation are required for degradable fracturing ball applications. In this work, the microstructure, mechanical properties, and corrosion behavior of extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5 weight percent) alloys are investigated using optical microscopy, scanning electronic microscopy equipped with energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electronic microscopy, compression tests, electrochemical measurements, and hydrogen evolution tests, to explore their potential as excellent candidate alloys for degradable fracturing ball applications. It is found that the Mg-3Zn-Y alloy is mainly composed of α-Mg, Mg3Zn3Y2, and Mg3Zn6Y phases. After Cu addition, a new MgZnCu phase is formed, while the Mg3Zn3Y2 phase disappears. The Mg-3Zn-Y-3Cu alloy shows the highest compressive strength (473 MPa) and yield strength (402 MPa), mainly attributed to the combined effect of the fine-grain and dispersed precipitation of Mg3Zn6Y and MgZnCu. The corrosion rate of Mg-3Zn-Y-3Cu reaches 0.41 mm day−1 in 3.5 wt.% KCl solution. Consequently, Mg-3Zn-Y-3Cu alloy is a suitable degradable fracturing ball-seat material.
References
[1] B.L.Mordike, K.U.Kainer (Eds.): Magnesium alloys and their application, Werkstoff-Informationsgesellschaft, Frankfurt (1998).Suche in Google Scholar
[2] D.Q.Fang, C.Liang, K.L.Cai, Z.G.Gao, Q.M.Peng, Y.S.Chai: Int. J. Mater. Res.106 (2015) 307. 10.3139/146.111177Suche in Google Scholar
[3] S.R.Agnew, J.F.Nie: Scr. Mater.63 (2010) 671. 2010.06.029. 10.1016/j.scriptamatSuche in Google Scholar
[4] K.Hono, C.L.Mendis, T.T.Sasaki, K.Oh-ishi: Scr. Mater.63 (2010) 710. 2010.01.038. 10.1016/j.scriptamatSuche in Google Scholar
[5] H.E.Friedrich, B.L.Mordike: Magnesium Technology, Springer-Verlag, Berlin Heidelberg (2006).Suche in Google Scholar
[6] A.Atrens, G.L.Song, M.Liu, Z.M.Shi, F.Y.Cao, M.S.Dargusch: Adv. Eng. Mater.17 (2015) 400. 10.1002/adem.201400434Suche in Google Scholar
[7] A.Atrens, G.L.Song, F.Y.Cao, Z.M.Shi, P.K.Bowen: J. Magnesium Alloys1 (2013) 177. 10.1016/j.jma.2013.09.003Suche in Google Scholar
[8] B.S.Liu, Y.H.Wei, L.F.Hou: J. Mater. Eng. Perform.22 (2013) 50. 10.1007/s11665-012-0209-0Suche in Google Scholar
[9] B.S.Liu, Y.H.Wei, W.Y.Chen, L.F.Hou, C.L.Guo: Surf. Eng.31 (2015) 816. 10.1179/1743294414Y.0000000439Suche in Google Scholar
[10] B.S.Liu, Y.H.Wei, W.Y.Chen, L.F.Hou, C.L.Guo: Eng. Fail. Anal.42 (2014) 231. 10.1016/j.engfailanal.2014.04.014Suche in Google Scholar
[11] F.Y.Cao, Z.M.Shi, J.Hofstetter, P.J.Uggowitzer, G.L.Song, M.Liu, A.Atrens: Corros. Sci.75 (2013) 78. 10.1016/j.corsci.2013.05.018Suche in Google Scholar
[12] Z.Y.Xu, G.Agrawal: US Patent: us 20110132143A1 (2011).Suche in Google Scholar
[13] Z.W.Geng, D.H.Xiao, L.Chen: J. Alloys Compd.686 (2016) 145. 10.1016/j.jallcom.2016.05.288Suche in Google Scholar
[14] L.Chen, Z.Wu, D.H.Xiao, Z.W.Geng, P.F.Zhou: Mater. Corros.66 (2015) 1159. 10.1002/maco.201408090Suche in Google Scholar
[15] D.H.Xiao, J.N.Wang, D.Ding, S.Chen: J. Alloys Compd.343 (2002) 77. 10.1016/S0925-8388(02)00076-2Suche in Google Scholar
[16] N.S.McIntgre, C.Chen: Corros. Sci.40 (1998) 1697. 10.1016/S0010-938X(98)00072-9Suche in Google Scholar
[17] Z.X.Li, M.Kawashita: J. Artif. Organs.14 (2011) 163. 10.1007/s10047-011-0585-5Suche in Google Scholar PubMed
[18] Z.M.Shi, A.Atrens: Corros. Sci.53 (2011) 226. 10.1016/j.corsci.2010.09.016Suche in Google Scholar
[19] Z.M.Shi, M.Liu, A.Atrens: Corros. Sci.52 (2010) 579. 10.1016/j.corsci.2009.10.016Suche in Google Scholar
[20] X.G.Fang, S.S.Wu, S.L.Lü, J.Wang, X.Yang: Mater. Sci. Eng. A679 (2017) 372. 10.1016/j.msea.2016.10.035Suche in Google Scholar
[21] Y.G.Liao, X.Q.Han, M.X.Zeng, M.Jin: Mater. Des.66 (2015) 581. 10.1016/j.matdes.2014.05.003Suche in Google Scholar
[22] M.C.Zhao, M.Liu, G.L.Song, A.Atrens: Adv. Eng. Mater.10 (2008) 93. 10.1002/adem.200700234Suche in Google Scholar
[23] Y.Zhang, X.Q.Zeng, C.Lu, W.J.Ding: Mater. Sci. Eng. A428 (2006) 91. 10.1016/j.msea.2006.04.103Suche in Google Scholar
[24] K.Hagihara, A.Kinoshita, Y.Sugino, M.Yamasaki, Y.Kawamura, H.Y.Yasuda, Y.Umakoshi: Acta Mater.58 (2010) 6282. 10.1016/j.actamat.2010.07.050Suche in Google Scholar
[25] R.Wu, Y.Yan, G.Wang, L.E.Murr, W.Han, Z.Zhang, M.Zhang: Int. Mater. Rev.60 (2015) 65. 10.1179/1743280414Y.0000000044Suche in Google Scholar
[26] Z.Q.Zhang, X.Liu, W.Y.Hu, J.H.Li, Q.C.Le, L.Bao, Z.J.Zhu, J.Z.Cui: J. Alloys Compd.624 (2015) 116. 10.1016/j.jallcom.2014.10.177Suche in Google Scholar
[27] Z.B.Wang, N.R.Tao, S.Li, W.Wang, G.Liu, J.Lu, K.Lu: Mater. Sci. Eng. A352 (2003) 144. 10.1016/S0921-5093(02)00870-5Suche in Google Scholar
[28] Z.N.Farhat, Y.Ding, D.O.Northwood, A.T.Alpas: Mater. Sci. Eng. A206 (1996) 302. 10.1016/0921-5093(95)10016-4Suche in Google Scholar
[29] R.Armstrong, I.Codd, R.M.Douthwaite, N.J.Petch: Philos. Mag.7 (1962) 45. 10.1080/14786436208201857Suche in Google Scholar
[30] X.H.Chen, L.Z.Liu, F.S.Pan, J.J.Mao, X.Y.Xu, T.Yan: Mater. Sci. Eng. B197 (2015) 67. 10.1016/j.mseb.2015.03.012Suche in Google Scholar
[31] A.Singh, H.Somekawa, T.Mukai: Mater. Sci. Eng. A528 (2011) 6647. 10.1016/j.msea.2011.05.001Suche in Google Scholar
[32] R.O.Scattergood, D.J.Bacon: Philos. Mag.31 (1975) 179. 10.1080/14786437508229295Suche in Google Scholar
[33] G.L.Song, A.Atrens: Adv. Eng. Mater.1 (1999) 11. 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-NSuche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Formation of intermetallic compounds and their effect on mechanical properties of aluminum–titanium alloy films
- Microstructure and properties of hot extruded Mg-3Zn-Y-xCu (x = 0, 1, 3, 5) alloys
- Effects of rare-earth element addition and heat treatment on the microstructures and mechanical properties of Al-25 % Si alloy
- Effects of silicon on characteristics of dynamic strain aging in a near-α titanium alloy
- Influence of heat treatment on the structure, hardness and strength of ZnAl40Cu3 alloy
- W–Cu composites subjected to heavy hot deformation
- Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route
- Mechanical properties of nano-SiO2 reinforced 3D glass fiber/epoxy composites
- Reinforcement effect and synergy of carbon nanofillers with different dimensions in high density polyethylene based nanocomposites
- Short Communications
- A general method towards transition metal monoboride nanopowders
- DGM News
- DGM News