Fabrication of Ni/SiC composite powder by mechanical alloying and its effects on properties of copper matrix composites
-
Haibo Ma
, Yu Lu , Hongbin Lu und Xiangkang Meng
Abstract
Composite powders of Ni-30SiC (vol.%) were fabricated by mechanical alloying. Scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy were used to analyze the microstructure, morphology and composition of the composite powders. Mixed powders and Ni coating layers on the surface of SiC particles were investigated. The Ni/SiC composite powder with the optimal coating was mixed with Cu powder to manufacture Cu matrix composites by powder metallurgy, and the relative density, hardness and electrical resistivity of the composites were measured. The results show that the Ni coating becomes increasingly prominent and that the mixed powders become increasingly homogeneous as the ball-milling time increases; however, an excessively long milling time has a negative impact on the coating. The milling speed also has an important effect on the coating. Too high of a rotational speed quickens the rate of work hardening of the coating layer, which causes the coating layer to fall off. When the milling time is 20 h, the milling speed is 300 r min−1 and the ball to powder weight ratio is 10 : 1, the SiC particles are well coated by Ni and the powders are uniformly mixed. The properties of the copper matrix composite processed with the optimal milling parameters are effectively improved.
References
[1] S.CTjong, K.CLau: Mater. Lett.43 (2000) 274. 10.1016/S0167-577X(99)00273-6Suche in Google Scholar
[2] A.K.Garg, L.C.De Jonghe: J. Mater. Sci.28 (1993) 3427. 10.1007/BF01159817Suche in Google Scholar
[3] H.Ogihara, H.Wang, T.Saji: Appl. Surf. Sci.296 (2014) 108. 10.1016/j.apsusc.2014.01.057Suche in Google Scholar
[4] M.Esmaily, N.Mortazavi, J.E.Svensson, M.Halvarsson, M.Wessen, L.G.Johansson, A.E.W.Jarfors: Composites Part B94 (2016) 176. 10.1016/j.compositesb.2016.02.019Suche in Google Scholar
[5] X.Tang, L.Chen, X.Cheng, H.Gu: Ceram. Int.40 (2014) 14223. 10.1016/j.ceramint.2014.06.011Suche in Google Scholar
[6] R.T.Mousavian, R.A.Khosroshahi, S.Yazdani, D.Brabazon: Mater. Des.89 (2016) 58. 10.1016/j.matdes.2015.09.130Suche in Google Scholar
[7] G. CelebiEfe, I.Altinsoy, T.Yener, M.Ipek, S.Zeytin, C.Bindal: Vacuum85 (2010) 643. 10.1016/j.vacuum.2010.09.009Suche in Google Scholar
[8] S.F.Moustafa, Z.Abdel-Hamid, A.M.Abd-Elhay: Mater. Lett.53 (2002) 244. 10.1016/S0167-577X(01)00485-2Suche in Google Scholar
[9] L.Zhang, X.Qu, B.Duan, X.He, S.Ren, M.Qin: Compos. Sci. Technol.68 (2008) 2731. 10.1016/j.compscitech.2008.05.018Suche in Google Scholar
[10] A.Onat: J. Alloys Compd.489 (2010) 119. 10.1016/j.jallcom.2009.09.027Suche in Google Scholar
[11] S.G.Sapate, A.Uttarwar, R.C.Rathod, R.K.Paretkar: Mater. Des.30 (2009) 376. 10.1016/j.matdes.2008.04.055Suche in Google Scholar
[12] L.MishnaevskyJr, K.Derrien, D.Baptiste: Compos. Sci. Technol.64 (2004) 1805. 10.1016/j.compscitech.2004.01.013Suche in Google Scholar
[13] Q.Zhao, W.Mahmood, Y.Zhu: Appl. Surf. Sci.367 (2016) 249. 10.1016/j.apsusc.2016.01.055Suche in Google Scholar
[14] P.He, S.Huang, H.Wang, Z.Huang, J.Hu, X.Cheng, C.Pan: Ceram. Int.40 (2014) 16653. 10.1016/j.ceramint.2014.08.027Suche in Google Scholar
[15] Z.Yao, Q.Xia, L.Chang, C.Li, Z.Jiang: J. Alloys Compd.633 (2015) 435. 10.1016/j.jallcom.2015.02.008Suche in Google Scholar
[16] N.B.Khosroshahi, R.A.Khosroshahi, R.T.Mousavian, D.Brabazon: Ceram. Int.40 (2014) 12149. 10.1016/j.ceramint.2014.04.055Suche in Google Scholar
[17] S.Faraji, A.H.Faraji, S.R.Noori: Mater. Des.54 (2014) 570. 10.1016/j.matdes.2013.08.092Suche in Google Scholar
[18] M.Z.Mehrizi, R.Beygi, Gh.Eisaabadi: Ceram. Int.42 (2016) 8895. 10.1016/j.ceramint.2016.02.144Suche in Google Scholar
[19] F.Ren, W.Zhu, K.Chu, C.Zhao: J. Alloys Compd.676 (2016) 164. 10.1016/j.jallcom.2016.03.141Suche in Google Scholar
[20] Y.Meng, Y.Shen, C.Chen, Y.Li, X.Feng: Appl. Surf. Sci.282 (2013) 757. 10.1016/j.apsusc.2013.06.049Suche in Google Scholar
[21] G.Zhang, D.Gu: Appl. Surf. Sci.273 (2013) 364. 10.1016/j.apsusc.2013.02.044Suche in Google Scholar
[22] H.Huang, C.Yang, M.de los Reyes, Y.FZhou, L.Yan, X.Zhou: J. Mater. Sci. Technol.31 (2015) 923. 10.1016/j.jmst.2014.12.009Suche in Google Scholar
[23] C.Yang, H.Huang, X.Zhou, Z.Li, X.Zhou, T.Xia, D.Zhang: J. Nucl. Mater.467 (2015) 635. 10.1016/j.jnucmat.2015.10.044Suche in Google Scholar
[24] M.Phasha, K.Maweja, C.Babst: J. Alloys Compd.492 (2010) 201. 10.1016/j.jallcom.2009.11.184Suche in Google Scholar
[25] A.Canakci, F.Erdemir, T.Varol, A.Patir: Measurement46 (2013) 3532. 10.1016/j.measurement.2013.06.035Suche in Google Scholar
[26] A.R.Othman, A.Sardarinejad, A.K.Masrom: Int. J. Adv. Manuf. Technol.76 (2015) 1319. 10.1007/s00170-014-6283-8Suche in Google Scholar
[27] J.B.Fogagnolo, F.Velasco, M.H.Robert, J.M.Torralba: Mater. Sci. Eng. A342 (2003) 131. 10.1016/S0921-5093(02)00246-0Suche in Google Scholar
[28] H.Sun, Y.Fang, Y.Wan: Metal Mine376 (2007) 104 (in Chinese). 10.3321/j.issn:1001-1250.2007.10.027Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy
- Evolution of mechanical properties and microstructure of differently cryogenically treated hot die steel AISI–H13
- Microstructure and mechanical properties of nickel particle reinforced magnesium composite: impact of reinforcement introduction method
- Microstructure and mechanical properties of carbon nanotube-reinforced ZK61 magnesium alloy composites prepared by spark plasma sintering
- Solidification microstructures of Cu–Zr–Al–Y BMG produced by casting in a wedge-shaped copper mold
- Energy spectrum analysis of anodic oxidation film surface–interface on 7475 aluminum alloy after salt spray corrosion
- Fabrication of Ni/SiC composite powder by mechanical alloying and its effects on properties of copper matrix composites
- The sintering behavior and physical properties of Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics
- The effect of heating rate on the microstructural breakdown required for thixoformability
- Nano-particles in powder injection molding of an aluminum matrix composite: Rheological behavior, production and properties
- Short Communications
- Preparation of vaterite CaCO3 microspheres by fast precipitation method
- Slag corrosion resistance of Al4SiC4
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy
- Evolution of mechanical properties and microstructure of differently cryogenically treated hot die steel AISI–H13
- Microstructure and mechanical properties of nickel particle reinforced magnesium composite: impact of reinforcement introduction method
- Microstructure and mechanical properties of carbon nanotube-reinforced ZK61 magnesium alloy composites prepared by spark plasma sintering
- Solidification microstructures of Cu–Zr–Al–Y BMG produced by casting in a wedge-shaped copper mold
- Energy spectrum analysis of anodic oxidation film surface–interface on 7475 aluminum alloy after salt spray corrosion
- Fabrication of Ni/SiC composite powder by mechanical alloying and its effects on properties of copper matrix composites
- The sintering behavior and physical properties of Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics
- The effect of heating rate on the microstructural breakdown required for thixoformability
- Nano-particles in powder injection molding of an aluminum matrix composite: Rheological behavior, production and properties
- Short Communications
- Preparation of vaterite CaCO3 microspheres by fast precipitation method
- Slag corrosion resistance of Al4SiC4
- DGM News
- DGM News