Home Preparation of vaterite CaCO3 microspheres by fast precipitation method
Article
Licensed
Unlicensed Requires Authentication

Preparation of vaterite CaCO3 microspheres by fast precipitation method

  • Zhi Gang Wu , Yang Guo , Jian Wang and Yan Rong Jia
Published/Copyright: February 22, 2017
Become an author with De Gruyter Brill

Abstract

Here we describe a rapid approach for synthesizing pure vaterite calcium carbonate microspheres through a fast precipitation method. The precipitated CaCO3 microspheres were produced in alkaline aqueous media with the addition of sodium citrate at room temperature. The obtained microspheres were investigated with scanning electron microscopy, dynamic light scattering, fourier transform infrared spectroscopy and powder X-ray diffraction. The characterization results reveal that the obtained microspheres are pure vaterite with an average diameter of 5 μm. The possible reason for the formation of vaterite CaCO3 microspheres instead of calcite has also been discussed.


*Correspondence address, Associate Professor Zhi Gang Wu, PhD, School of Science, North University of China, Xueyuan Road 3, Taiyuan, 030051, Shanxi, P. R. China, Tel.: +86-351-3923197, Fax: +86-351-3942724, E-mail: , Web: http://lxy.nuc.edu.cn/gyxy/jzg/jzgyl.htm

References

[1] F.Manoli, S.Koutsopoulos, E.Dalas: J. Cryst. Growth182 (1997) 116. 10.1016/S0022-0248(97)00318-7Search in Google Scholar

[2] C.Chen, H.F.Han, W.Yang, X.Y.Ren, X.D.Kong: Regener. Biomater.3 (2016) 57. 10.1093/rb/rbv029Search in Google Scholar PubMed PubMed Central

[3] H.Colfen, L.Qi: Chem. Eur. J.7 (2001) 106. 10.1002/1521-3765(20010105)7:1<106::AID-CHEM106>3.0.CO;2-DSearch in Google Scholar

[4] Y.Y.Zhao, W.Du, L.M.Sun, L.Yu, J.J.Jiao, R.Wang: Colloid Polym. Sci.291 (2013) 2191. 10.1007/s00396-013-2960-7Search in Google Scholar

[5] E.M.Flaten, M.Seiersten, J.P.Andreassen: J. Cryst. Growth311 (2009) 3533. 10.1016/j.jcrysgro.2009.04.014Search in Google Scholar

[6] S.P.Bao, X.Y.Chen, Z.Li, B.J.Yang, Y.C.Wu: Cryst. Eng. Comm.13 (2011) 2511. 10.1039/c0ce00794cSearch in Google Scholar

[7] K.Naka, Y.Tanaka, Y.Chujo: Langmuir18 (2002) 3655. 10.1021/la011345dSearch in Google Scholar

[8] P.Kasparov, P.M.Antonietti, H.Cöfen: Colloids Surf. A250 (2004) 153. 10.1016/j.colsurfa.2004.03.033Search in Google Scholar

[9] Z.Zhang, Y.Xie, X.Xu, H.Pan, R.Tang: J. Cryst. Growth343 (2012) 62. 10.1016/j.jcrysgro.2012.01.025Search in Google Scholar

[10] A.Sarkar, S.Mahapatra: Cryst. Growth Des.10 (2010) 2129. 10.1021/cg8002959Search in Google Scholar

[11] J.R.Clarkon, T.J.Price, C.J.Adams: J. Chem. Soc., Dalton Trans.88 (1992) 243. 10.1039/FT9928800243Search in Google Scholar

[12] Y.S.Han, G.Hadiko, M.Fuji, M.Takahashi: J. Eur. Ceram. Soc.26 (2006) 843. 10.1016/j.jeurceramsoc.2005.07.050Search in Google Scholar

[13] M.El-S.I.Saraya, H.H.A.L.Rokbaa: Am. J. Nanomater.4 (2016) 44. 10.12691/ajn-4-2-3Search in Google Scholar

[14] D.L.Jin, F.Wang, L.H.Yue: Cryst. Res. Technol.46 (2011) 140. 10.1002/crat.201000484Search in Google Scholar

[15] S.H.Yu, H.Colfen, J.Hartmann: Adv. Funct. Mater.12 (2002) 541. 10.1002/1616-3028(20020805)12:8<541::AID-#6;ADFM541>3.0.CO;2-3Search in Google Scholar

Received: 2016-10-25
Accepted: 2016-12-19
Published Online: 2017-02-22
Published in Print: 2017-03-13

© 2017, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111473/html
Scroll to top button