Home Fabrication of Ni/SiC composite powder by mechanical alloying and its effects on properties of copper matrix composites
Article
Licensed
Unlicensed Requires Authentication

Fabrication of Ni/SiC composite powder by mechanical alloying and its effects on properties of copper matrix composites

  • Haibo Ma , Yu Lu , Hongbin Lu and Xiangkang Meng
Published/Copyright: February 22, 2017
Become an author with De Gruyter Brill

Abstract

Composite powders of Ni-30SiC (vol.%) were fabricated by mechanical alloying. Scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy were used to analyze the microstructure, morphology and composition of the composite powders. Mixed powders and Ni coating layers on the surface of SiC particles were investigated. The Ni/SiC composite powder with the optimal coating was mixed with Cu powder to manufacture Cu matrix composites by powder metallurgy, and the relative density, hardness and electrical resistivity of the composites were measured. The results show that the Ni coating becomes increasingly prominent and that the mixed powders become increasingly homogeneous as the ball-milling time increases; however, an excessively long milling time has a negative impact on the coating. The milling speed also has an important effect on the coating. Too high of a rotational speed quickens the rate of work hardening of the coating layer, which causes the coating layer to fall off. When the milling time is 20 h, the milling speed is 300 r min−1 and the ball to powder weight ratio is 10 : 1, the SiC particles are well coated by Ni and the powders are uniformly mixed. The properties of the copper matrix composite processed with the optimal milling parameters are effectively improved.


*Correspondence address, Hongbin Lu, Xiangkang Meng, Institute of Materials Engineering, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China, Tel.: +8618362407943, Fax: +86258359 5535, E-mail: ,

References

[1] S.CTjong, K.CLau: Mater. Lett.43 (2000) 274. 10.1016/S0167-577X(99)00273-6Search in Google Scholar

[2] A.K.Garg, L.C.De Jonghe: J. Mater. Sci.28 (1993) 3427. 10.1007/BF01159817Search in Google Scholar

[3] H.Ogihara, H.Wang, T.Saji: Appl. Surf. Sci.296 (2014) 108. 10.1016/j.apsusc.2014.01.057Search in Google Scholar

[4] M.Esmaily, N.Mortazavi, J.E.Svensson, M.Halvarsson, M.Wessen, L.G.Johansson, A.E.W.Jarfors: Composites Part B94 (2016) 176. 10.1016/j.compositesb.2016.02.019Search in Google Scholar

[5] X.Tang, L.Chen, X.Cheng, H.Gu: Ceram. Int.40 (2014) 14223. 10.1016/j.ceramint.2014.06.011Search in Google Scholar

[6] R.T.Mousavian, R.A.Khosroshahi, S.Yazdani, D.Brabazon: Mater. Des.89 (2016) 58. 10.1016/j.matdes.2015.09.130Search in Google Scholar

[7] G. CelebiEfe, I.Altinsoy, T.Yener, M.Ipek, S.Zeytin, C.Bindal: Vacuum85 (2010) 643. 10.1016/j.vacuum.2010.09.009Search in Google Scholar

[8] S.F.Moustafa, Z.Abdel-Hamid, A.M.Abd-Elhay: Mater. Lett.53 (2002) 244. 10.1016/S0167-577X(01)00485-2Search in Google Scholar

[9] L.Zhang, X.Qu, B.Duan, X.He, S.Ren, M.Qin: Compos. Sci. Technol.68 (2008) 2731. 10.1016/j.compscitech.2008.05.018Search in Google Scholar

[10] A.Onat: J. Alloys Compd.489 (2010) 119. 10.1016/j.jallcom.2009.09.027Search in Google Scholar

[11] S.G.Sapate, A.Uttarwar, R.C.Rathod, R.K.Paretkar: Mater. Des.30 (2009) 376. 10.1016/j.matdes.2008.04.055Search in Google Scholar

[12] L.MishnaevskyJr, K.Derrien, D.Baptiste: Compos. Sci. Technol.64 (2004) 1805. 10.1016/j.compscitech.2004.01.013Search in Google Scholar

[13] Q.Zhao, W.Mahmood, Y.Zhu: Appl. Surf. Sci.367 (2016) 249. 10.1016/j.apsusc.2016.01.055Search in Google Scholar

[14] P.He, S.Huang, H.Wang, Z.Huang, J.Hu, X.Cheng, C.Pan: Ceram. Int.40 (2014) 16653. 10.1016/j.ceramint.2014.08.027Search in Google Scholar

[15] Z.Yao, Q.Xia, L.Chang, C.Li, Z.Jiang: J. Alloys Compd.633 (2015) 435. 10.1016/j.jallcom.2015.02.008Search in Google Scholar

[16] N.B.Khosroshahi, R.A.Khosroshahi, R.T.Mousavian, D.Brabazon: Ceram. Int.40 (2014) 12149. 10.1016/j.ceramint.2014.04.055Search in Google Scholar

[17] S.Faraji, A.H.Faraji, S.R.Noori: Mater. Des.54 (2014) 570. 10.1016/j.matdes.2013.08.092Search in Google Scholar

[18] M.Z.Mehrizi, R.Beygi, Gh.Eisaabadi: Ceram. Int.42 (2016) 8895. 10.1016/j.ceramint.2016.02.144Search in Google Scholar

[19] F.Ren, W.Zhu, K.Chu, C.Zhao: J. Alloys Compd.676 (2016) 164. 10.1016/j.jallcom.2016.03.141Search in Google Scholar

[20] Y.Meng, Y.Shen, C.Chen, Y.Li, X.Feng: Appl. Surf. Sci.282 (2013) 757. 10.1016/j.apsusc.2013.06.049Search in Google Scholar

[21] G.Zhang, D.Gu: Appl. Surf. Sci.273 (2013) 364. 10.1016/j.apsusc.2013.02.044Search in Google Scholar

[22] H.Huang, C.Yang, M.de los Reyes, Y.FZhou, L.Yan, X.Zhou: J. Mater. Sci. Technol.31 (2015) 923. 10.1016/j.jmst.2014.12.009Search in Google Scholar

[23] C.Yang, H.Huang, X.Zhou, Z.Li, X.Zhou, T.Xia, D.Zhang: J. Nucl. Mater.467 (2015) 635. 10.1016/j.jnucmat.2015.10.044Search in Google Scholar

[24] M.Phasha, K.Maweja, C.Babst: J. Alloys Compd.492 (2010) 201. 10.1016/j.jallcom.2009.11.184Search in Google Scholar

[25] A.Canakci, F.Erdemir, T.Varol, A.Patir: Measurement46 (2013) 3532. 10.1016/j.measurement.2013.06.035Search in Google Scholar

[26] A.R.Othman, A.Sardarinejad, A.K.Masrom: Int. J. Adv. Manuf. Technol.76 (2015) 1319. 10.1007/s00170-014-6283-8Search in Google Scholar

[27] J.B.Fogagnolo, F.Velasco, M.H.Robert, J.M.Torralba: Mater. Sci. Eng. A342 (2003) 131. 10.1016/S0921-5093(02)00246-0Search in Google Scholar

[28] H.Sun, Y.Fang, Y.Wan: Metal Mine376 (2007) 104 (in Chinese). 10.3321/j.issn:1001-1250.2007.10.027Search in Google Scholar

Received: 2016-09-18
Accepted: 2016-12-22
Published Online: 2017-02-22
Published in Print: 2017-03-13

© 2017, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111475/pdf
Scroll to top button