Effect of graphite content on the tribological behavior of Al/2SiC/Gr hybrid nano-composites processed via mechanical milling
-
Sareh Mosleh-Shirazi
Abstract
The influence of 0 – 7 vol.% graphite addition on the dry sliding wear characteristics of Al/2SiC/Gr hybrid nanocomposites was examined. The composites were synthesized via ball milling of Al6061, nano-sized SiC and micron-sized graphite particles followed by cold pressing and hot extrusion. While the hardness of composites decreased almost linearly with their graphite content, the samples containing 2 % and 5 % of graphite exhibited minimum values of wear rate and friction coefficient, respectively. Addition of only 2 vol.% of graphite to the Al/2SiC nanocomposite resulted in changing the wear mechanism from a combination of adhesive and abrasive micro-cutting to abrasive and delamination wear. The superior tribological properties of the hybrid nanocomposites investigated in the present study as compared to those of Al/30SiC/Gr hybrid composites containing micron-sized SiC particles are discussed.
References
[1] A.Ghiami, E.A.Diler, R.Ipek: Int. J. Mater. Res.106 (2015) 43. 10.3139/146.111152Suche in Google Scholar
[2] M.Moazami-Gudarzi, F.Akhlaghi: Powder Technol.245 (2013) 126. 10.1016/j.powtec.2013.04.025Suche in Google Scholar
[3] G.Requena, B.Bauer, H.P.Degischer, M.Lieblich: Int. J. Mater. Res.102 (2011) 982. 10.3139/146.110553Suche in Google Scholar
[4] A.Zolriasatein, R.A.Khosroshahi, M.Emamy: Int. J. Miner. Metall. Mater.20 (2013) 290. 10.1007/s12613-013-0726-3Suche in Google Scholar
[5] F.Akhlaghi, A.Lajevardi, H.M.Maghanaki: J. Mater. Process. Technol.155–156 (2004) 1874. 10.1016/j.jmatprotec.2004.04.328Suche in Google Scholar
[6] Y.Zhai, X.Ma, Z.Mei: J. Wuhan Univ. Technol.28 (2013) 813. 10.1007/s11595-013-0774-6Suche in Google Scholar
[7] Y.Sahin, M.Acilar: Composites Part A34 (2003) 709. 10.1016/S1359-835X(03)00142-8Suche in Google Scholar
[8] T.Wang, L.Xie, X.Wang: Int. J. Adv. Manuf. Technol.79 (2015) 1185. 10.1007/s00170-015-6876-xSuche in Google Scholar
[9] S.Suresha, B.K.Sridhara: Compos. Sci. Technol.70 (2010) 1652. 10.1016/j.compscitech.2010.06.013Suche in Google Scholar
[10] R.N.Rao, S.Das: Mater. Des.31 (2010) 1200. 10.1016/j.matdes.2009.09.032Suche in Google Scholar
[11] L.Krishnamurthy, D. AbdulBudan, B.K.Sridhara: Mater. Manuf. Processes22 (2007) 903. 10.1080/10426910701451754Suche in Google Scholar
[12] H.Hocheng, S.B.Yen, T.Ishihara, B.K.Yen: Composites Part A28 (1997) 883. 10.1016/S1359-835X(97)00055-9Suche in Google Scholar
[13] F.Akhlaghi, A.Zare–Bidaki: Wear266 (2009) 37. 10.1016/j.wear.2008.05.013Suche in Google Scholar
[14] W.Ma, J.Lu: Wear270 (2011) 218. 10.1016/j.wear.2010.10.062Suche in Google Scholar
[15] F.Akhlaghi, S.A.Pelaseyyed: Mater. Sci. Eng. A385 (2004) 258. 10.1016/j.msea.2004.06.050Suche in Google Scholar
[16] M.L. TedGuo, C.Y.A.Tsao: Mater. Sci. Eng. A333 (2002) 134. 10.1016/S0921-5093(01)01817-2Suche in Google Scholar
[17] J.N.Wei, H.F.Cheng, Y.F.Zhang, F.S.Han, Z.C.Zhou, J.P.Shui: Mater. Sci. Eng. A325 (2002) 444. 10.1016/S0921-5093(01)01535-0Suche in Google Scholar
[18] S.Mahdavi, F.Akhlaghi: Tribol. Lett.44 (2011) 1. 10.1007/s11249-011-9818-2Suche in Google Scholar
[19] S.Mahdavi, F.Akhlaghi: J. Mater. Sci.46 (2011) 1502. 10.1007/s10853-010-4954-xSuche in Google Scholar
[20] S.Suresha, B.K.Sridhara: Mater. Des.34 (2012) 576. 10.1016/j.matdes.2011.05.010Suche in Google Scholar
[21] A.Vencl, I.Bobic, S.Arostegui, B.Bobic, A.Marinkovic, M.Babic: J. Alloys Compd.506 (2010) 631. 10.1016/j.jallcom.2010.07.028Suche in Google Scholar
[22] S.A.Sajjadi, H.R.Ezatpour, H.Beygi: Mater. Sci. Eng. A528 (2011) 8765. 10.1016/j.msea.2011.08.052Suche in Google Scholar
[23] P.Ravindran, K.Manisekar, S. VinothKumar: Mater. Des.51 (2013) 448. 10.1016/j.matdes.2013.04.015Suche in Google Scholar
[24] S.P.Rajagopal, R.G.Lakshmikantha, A.Virupaxi, K.S.Amarappa: Int. J. Mater. Res.107 (2016) 439. 10.3139/146.111356Suche in Google Scholar
[25] I.Mobasherpour, A.A.Tofigh, M.Ebrahimi: Mater. Chem. Phys.38 (2013) 535. 10.1016/j.matchemphys.2012.12.015Suche in Google Scholar
[26] M.S.El-Eskandarany: J. Alloys Compd.279 (1998) 263. 10.1016/S0925-8388(98)00658-6Suche in Google Scholar
[27] T.Skrzekut, A.Kula, L.Blaz, G.Wloch, M.Sugamata: Int. J. Mater. Res.105 (2014) 282. 10.3139/146.111019Suche in Google Scholar
[28] A.Hassani, E.Bagherpour, F.Qods: J. Alloys Compd.591 (2014) 132. 10.1016/j.jallcom.2013.12.205Suche in Google Scholar
[29] M.Razavi, I.Mobasherpour: Int. J. Mater. Res.105 (2014) 1103. 10.3139/146.111126Suche in Google Scholar
[30] F.Ostovan, K.A.Matori, M.Toozandehjani, A.Oskoueian, H. MohamedYusoff, R.Yunus, A.H. MohamedAriff: Int. J. Mater. Res.106 (2015) 636. 10.3139/146.111232Suche in Google Scholar
[31] P.Ravindran, K.Manisekar, P.Narayanasamy, N.Selvakumar, R.Narayanasamy: Mater. Des.39 (2012) 42. 10.1016/j.matdes.2012.02.013Suche in Google Scholar
[32] F.Akhlaghi, S.Mosleh-Shirazi: Adv. Mater. Res.829 (2014) 505. 10.4028/www.scientific.net/AMR.829.505Suche in Google Scholar
[33] C.S.Ramesh, R.N.Ahmed, M.A.Mujeebu, M.Z.Abdullah: Mater. Des.30 (2009) 1957. 10.1016/j.matdes.2008.09.005Suche in Google Scholar
[34] M.Khakbiz, F.Akhlaghi: J. Alloys Compd.479 (2009) 334. 10.1016/j.jallcom.2008.12.076Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Digital material representation concept applied to investigation of local inhomogeneities during manufacturing of magnesium components for automotive applications
- Austenite to polygonal-ferrite transformation and carbide precipitation in high strength low alloy steel
- Precipitation behavior of carbides in high-carbon martensitic stainless steel
- Enthalpies of mixing in binary liquid alloys of lutetium with 3d metals
- Investigation of the 600 °C isothermal section of the Fe–Al–Ce ternary system
- The effect of high Al content on the microstructure and mechanical properties of Mg-xAl alloys processed by equal channel angular pressing
- Mechanical properties, bond strength and microstructural evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB)
- Effect of graphite content on the tribological behavior of Al/2SiC/Gr hybrid nano-composites processed via mechanical milling
- Numerical predictions and experimental investigation of the temperature distribution of friction stir welded AA 5059 aluminium alloy joints
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Digital material representation concept applied to investigation of local inhomogeneities during manufacturing of magnesium components for automotive applications
- Austenite to polygonal-ferrite transformation and carbide precipitation in high strength low alloy steel
- Precipitation behavior of carbides in high-carbon martensitic stainless steel
- Enthalpies of mixing in binary liquid alloys of lutetium with 3d metals
- Investigation of the 600 °C isothermal section of the Fe–Al–Ce ternary system
- The effect of high Al content on the microstructure and mechanical properties of Mg-xAl alloys processed by equal channel angular pressing
- Mechanical properties, bond strength and microstructural evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB)
- Effect of graphite content on the tribological behavior of Al/2SiC/Gr hybrid nano-composites processed via mechanical milling
- Numerical predictions and experimental investigation of the temperature distribution of friction stir welded AA 5059 aluminium alloy joints
- DGM News
- DGM News