Investigation of the 600 °C isothermal section of the Fe–Al–Ce ternary system
-
Huiyun Zheng
, Zhi Li , Li Ji and Fucheng Yin
Abstract
The isothermal section of the Fe–Al–Ce system at 600 °C was determined by means of scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray powder diffraction. Twenty three-phase regions were confirmed experimentally, and two three-phase regions could be deduced in this section. Five ternary compounds, i. e., τ1, τ2, τ3, τ5, and τ6, exist at 600 °C. The Fe2Ce phase contains 6.6 at.% Al in the Fe–Al–Ce system. The Fe solubility in α-Al, αAl11Ce3, αAl3Ce, Al2Ce, AlCe, and AlCe3 is approximately 1.7 at.%, 1.1 at.%, 1.2 at.%, 1.3 at.%, 5.8 at.%, and 0.1 at.%, respectively, and the solubility of Ce in α-Al, FeAl3, Fe2Al5, FeAl2, and FeAl is approximately 0.1 at.%, 1.2 at.%, 1.9 at.%, 0.9 at.%, and 3.7 at.%, respectively.
References
[1] S.T.Bluni, A.R.Marder, J.I.Goldstein: Mater. Charact.33 (1994) 93. 10.1016/1044-5803(94)90071-XSearch in Google Scholar
[2] L.Allegra, R.G.Hart, H.E.Townsend: Metall. Mater. Trans. A142 (1983) 401. 10.1007/BF02644218Search in Google Scholar
[3] Y.Wang, J.Xiong, J.Yan, H.Fan, J.Wang: Surf. Coat. Technol.206 (2011) 77. 10.1016/surfcoat.2011.08.042Search in Google Scholar
[4] F.Weinberg, M.Mager, L.Frederick: Can. Metall. Q.29 (1990) 163. 10.1179/cmq.1990.29.2.163Search in Google Scholar
[5] F.Rosalbino, E.Angelini, D.Macciò, A.Saccone, S.Delfino: Electrochim Acta.52 (2007) 7107. 10.1016/j.electacta.2007.05.041Search in Google Scholar
[6] L.Ji, Z.Li, Y.Wu, Y.X.Liu, M.X.Zhao, F.C.Yin: J. Phase Equilib. Diffus.36 (2015) 92. 10.1007/s11669-015-0363-9Search in Google Scholar
[7] T.Yang, C.Wu, X.Su, T.Hao, Y.Liu, H.P.Peng, J.H.Wang: J. Phase Equilib. Diffus.36 (2015) 1. 10.1007/s11669-015-0372-8Search in Google Scholar
[8] L.Lu, C.Wu, J.Wang, Y.Liu, H.Tu, X.Su: J. Alloys Compd.648 (2015) 881. 10.1016/j.jallcom.2015.06.235Search in Google Scholar
[9] T.B.Massalski: Binary alloy phase diagrams, Vol. 1, ASM, Metals Park, OH, USA (1990).Search in Google Scholar
[10] U.R.Kattner, B.P.Burton: ASM, Metals Park, OH, USA (1993) 12.Search in Google Scholar
[11] M.C.Gao, N.Ünlü, G.J.Shiflet, M.Mihalkovic, M.Widom: Metall. Mater. Trans. A36 (2005) 3269. 10.1007/s11661-005-0001-ySearch in Google Scholar
[12] H.Okamoto: J. Phase Equilib. Diffus.32 (2011) 392. 10.1007/s11669-011-9914-xSearch in Google Scholar
[13] Y.C.Chuang, C.H.Wu, Z.B.Shao: J. Less-Common Met.136 (1987) 147. 10.1016/0022-5088(87)90018-XSearch in Google Scholar
[14] K.L.Meissner: Metall und Erz22 (1925) 243.10.1002/mmnd.192519250309Search in Google Scholar
[15] D.F.Franceschini, S.F.D.Cunha: J. Magn. Magn. Mater.51 (1985) 280. 10.1016/0304-8853(85)90027-7Search in Google Scholar
[16] O.S.Zarechnyuk, M.G.Myskiv, V.R.Ryabov: Izv. Akad. Nauk SSSR, Met.2 (1969) 164.Search in Google Scholar
[17] E.I.Gladyshevsky, O.S.Zarechnyuk, Teslyuk, M. Yu, Kuzma, B. Yu: Kristallografiya6 (1961) 267.Search in Google Scholar
[18] O.S.Zarechnyuk, P.I.Kripyakevich: Kristallografiya7 (1962) 543.Search in Google Scholar
[19] A.M.Palasyuk, B.Y.Kotur, E.Bauer, H.Michor, G.Hilscher: J. Alloys Compd.367 (2004) 205. 10.1016/j.jallcom.2003.08.038Search in Google Scholar
[20] K.H.J.Buschow, J.H.N.V.Vucht, W.W.V.D.Hoogenhof: J. Less-Common Met.50 (1976) 145. 10.1016/0022-5088(76)90261-7Search in Google Scholar
[21] V.M.T.Thiede, T.Ebel, W.Jeitschko: J. Mater. Chem.8 (1998) 125. 10.1039/A705854CSearch in Google Scholar
[22] Y.P.Yarmolyuk, R.M.Rykhal, O.S.Zarechnyuk: Tezisy Dokl. Vses. Konf. Kristallokhim.2 (1974) 39.Search in Google Scholar
[23] L.Zhao: MSc thesis, The isothermal sections of the phase diagram of Fe–Zr–Ce, Fe–Zr–Nd and Al–Fe–Ce ternary system, Guangxi University, China (2011).Search in Google Scholar
[24] K.A.Gschneidner, F.W.Calderwood: Bull. Alloy Phase Diagrams9 (1988) 669. 10.1007/BF02883162Search in Google Scholar
[25] J.Grin, U.Burkhardt, M.Ellner, K.Peters: Z. Kristallogr.209 (1994) 479. 10.1524/zkri.1994.209.6.479Search in Google Scholar
[26] U.Burkhardt, Y.Grin, M.Ellner, K.Peters: Acta Crystallogr.50 (1994) 313. 10.1107/S0108768193013989Search in Google Scholar
[27] M.Kogachi, T.Haraguchi: Mater. Sci. Eng. A230 (1997) 124. 10.1016/S0921-5093(97)00016-6Search in Google Scholar
[28] T.B.Massalski, J.L.Murray, L.H.Bennett, H.Baker: Binary alloy phase diagrams, ASM, Metals Park, OH, USA (1986). 10.1007/BF02867807Search in Google Scholar
[29] A.Y.Takeuchi, S.F.D.Cunha: J. Magn. Magn. Mater.79 (1989) 175. 10.1016/0304-8853(89)90095-4Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Digital material representation concept applied to investigation of local inhomogeneities during manufacturing of magnesium components for automotive applications
- Austenite to polygonal-ferrite transformation and carbide precipitation in high strength low alloy steel
- Precipitation behavior of carbides in high-carbon martensitic stainless steel
- Enthalpies of mixing in binary liquid alloys of lutetium with 3d metals
- Investigation of the 600 °C isothermal section of the Fe–Al–Ce ternary system
- The effect of high Al content on the microstructure and mechanical properties of Mg-xAl alloys processed by equal channel angular pressing
- Mechanical properties, bond strength and microstructural evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB)
- Effect of graphite content on the tribological behavior of Al/2SiC/Gr hybrid nano-composites processed via mechanical milling
- Numerical predictions and experimental investigation of the temperature distribution of friction stir welded AA 5059 aluminium alloy joints
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Digital material representation concept applied to investigation of local inhomogeneities during manufacturing of magnesium components for automotive applications
- Austenite to polygonal-ferrite transformation and carbide precipitation in high strength low alloy steel
- Precipitation behavior of carbides in high-carbon martensitic stainless steel
- Enthalpies of mixing in binary liquid alloys of lutetium with 3d metals
- Investigation of the 600 °C isothermal section of the Fe–Al–Ce ternary system
- The effect of high Al content on the microstructure and mechanical properties of Mg-xAl alloys processed by equal channel angular pressing
- Mechanical properties, bond strength and microstructural evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB)
- Effect of graphite content on the tribological behavior of Al/2SiC/Gr hybrid nano-composites processed via mechanical milling
- Numerical predictions and experimental investigation of the temperature distribution of friction stir welded AA 5059 aluminium alloy joints
- DGM News
- DGM News