Austenite to polygonal-ferrite transformation and carbide precipitation in high strength low alloy steel
-
Xiaosheng Zhou
, Ji Dong , Yongchang Liu , Chenxi Liu , Liming Yu , Yuan Huang and Huijun Li
Abstract
By differential scanning calorimetry measurement and microstructural examination, the effects of cooling rates on the kinetics and microstructure of polygonal ferrite transformation have been investigated in a high strength low alloy steel. The peak temperature of ferrite transformation exhibits an evident dependency on cooling rate. With the cooling rate decreasing, the ferrite fraction corresponding to the maximum transformation rate is decreased, as well as the size of polygonal ferrite grains. More ferrite is nucleated at lower cooling rate. On the basis of the effects of austenite grain size and carbide precipitation on ferrite formation, it is suggested that carbide precipitation plays a more dominant role in the kinetics of ferrite transformation. During austenite–ferrite transformation, the ferrite nucleation still proceeds, and the nucleation would not be saturated by pre-existing nuclei.
References
[1] S.K.Dhua, D.Mukerjee, D.S.Sarma: Metall. Mater. Trans. A32 (2001) 2259. 10.1007/s11661-001-0201-zSearch in Google Scholar
[2] P.A.Manohar, T.Chansra: ISIJ Int.38 (1998) 766. 10.2355/isijinternational.38.766Search in Google Scholar
[3] S.Shanmugam, N.K.Ramisetti, R.D.K.Misra, J.Hartmann, S.G.Jansto: Mater. Sci. Eng. A478 (2008) 26. 10.1016/j.msea.2007.06.003Search in Google Scholar
[4] M.C.Zhao, K.Yang, F.R.Xiao, Y.Y.Shan: Mater. Sci. Eng. A355(2003) 126. 10.1016/S0921-5093(03)00074-1Search in Google Scholar
[5] F.R.Xiao, B.Liao, Y.Y.Shan, G.Y.Qiao, Y.Zhong, C.Zhang, K.Yang: Mater. Sci. Eng. A431(2006) 41. 10.1016/j.msea.2006.05.029Search in Google Scholar
[6] S.S.Babu: Curr. Opin. Solid State Mater. Sci.8 (2004) 267. 10.1016/j.cossms.2004.10.001Search in Google Scholar
[7] R.A.Ricks, P.R.Howell, G.S.Barritte: J. Mater. Sci.17 (1982) 732. 10.1007/BF00540369Search in Google Scholar
[8] G.Krauss, S.W.Thompson: ISIJ. Int.35 (1995) 937. 10.2355/isijinternational.35.937Search in Google Scholar
[9] M.Gouné, F.Danoix, J.Ågren, Y.Brechet, C.R.Hutchinson, M.Militzer, G.Purdy, S.van der Zwaag, H.Zurob: Mater. Sci. Eng. R92 (2015) 1. 10.1016/j.mser.2015.03.001Search in Google Scholar
[10] Y.C.Liu, F.Sommer, E.J.Mittemeijer: Metall. Mater. Trans. A39 (2008) 2306. 10.1007/s11661-008-9601-7Search in Google Scholar
[11] B.Vishwanadh, T.S.R.Ch.Murthy, A.Arya, R.Tewari, G.K.Dey: J. Alloys Compd.671 (2016) 424. 10.1016/j.jallcom.2016.02.092Search in Google Scholar
[12] C.Capdevila, F.G.Caballero, C.G.D.Andrés: Mater. Trans.44 (2003) 1087. 10.2320/matertrans.44.1087Search in Google Scholar
[13] B.L.Bodnar, S.S.Hansen: Metall. Mater. Trans. A25 (1994) 66510.1007/BF02665443Search in Google Scholar
[14] X.F.Zhang, P.Han, H.Terasaki, M.Sato, Y.Komizo: J. Mater. Sci. Technol.28 (2012) 241. 10.1016/S1005-0302(12)60025-5Search in Google Scholar
[15] L.Y.Lan, C.L.Qiu, D.W.Zhao, X.H.Gao, L.X.Du: Mater. Sci. Technol.27 (2011) 1657. 10.1179/1743284710Y.0000000026Search in Google Scholar
[16] http://ijmse.iust.ac.ir/article-1-224-en.pdfSearch in Google Scholar
[17] K.Dou, L.T.Meng, Q.Liu, B.Liu, Y.H.Huang: Met. Mater. Int.22 (2016) 349. 10.1007/s12540-016-2676-6Search in Google Scholar
[18] T.Furuhara, J.Yamaguchi, N.Sugita, G.Miyamoto, T.Maki: ISIJ Int.43 (2003) 1630. 10.2355/isijinternational.43.1630Search in Google Scholar
[19] D.Jain, D.Isheim, A.H.Hunter, D.N.Seidman: Metall. Mater. Trans. A47 (2016) 3860. 10.1007/s11661-016-3569-5Search in Google Scholar
[20] E.J.Mittemeijer: Fundamentals of Materials Science, Springer-Verlag, Berlin (2010). 10.1007/978-3-642-10500-5_1Search in Google Scholar
[21] Y.C.Liu, F.Sommer, E.J.Mittemeijer: Acta Mater.54 (2006) 3383. 10.1016/j.actamat.2006.03.029Search in Google Scholar
[22] Y.C.Liu, D.J.Wang, F.Sommer, E.J.Mittemeijer: Acta Mater.56 (2008) 3833. 10.1016/j.actamat.2008.04.015Search in Google Scholar
[23] Y.C.Liu, F.Sommer, E.J.Mittemeijer: Acta Mater.57 (2009) 2858. 10.1016/j.actamat.2009.02.044Search in Google Scholar
[24] X.J.Liang, A.J.Deardo: Metall. Mater. Trans. A45 (2014) 5173. 10.1007/s11661-014-2444-5Search in Google Scholar
[25] D.J.Wang, Y.C.Liu, Y.H.Zhang: J. Mater. Sci.43 (2008) 4876. 10.1007/s10853-008-2709-8Search in Google Scholar
[26] E.A.Brandes, G.B.Brook (Eds.), Smithells Metals Reference Book, 7th edition, Butterworth-Heinemann, Oxford (1992).Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Digital material representation concept applied to investigation of local inhomogeneities during manufacturing of magnesium components for automotive applications
- Austenite to polygonal-ferrite transformation and carbide precipitation in high strength low alloy steel
- Precipitation behavior of carbides in high-carbon martensitic stainless steel
- Enthalpies of mixing in binary liquid alloys of lutetium with 3d metals
- Investigation of the 600 °C isothermal section of the Fe–Al–Ce ternary system
- The effect of high Al content on the microstructure and mechanical properties of Mg-xAl alloys processed by equal channel angular pressing
- Mechanical properties, bond strength and microstructural evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB)
- Effect of graphite content on the tribological behavior of Al/2SiC/Gr hybrid nano-composites processed via mechanical milling
- Numerical predictions and experimental investigation of the temperature distribution of friction stir welded AA 5059 aluminium alloy joints
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Digital material representation concept applied to investigation of local inhomogeneities during manufacturing of magnesium components for automotive applications
- Austenite to polygonal-ferrite transformation and carbide precipitation in high strength low alloy steel
- Precipitation behavior of carbides in high-carbon martensitic stainless steel
- Enthalpies of mixing in binary liquid alloys of lutetium with 3d metals
- Investigation of the 600 °C isothermal section of the Fe–Al–Ce ternary system
- The effect of high Al content on the microstructure and mechanical properties of Mg-xAl alloys processed by equal channel angular pressing
- Mechanical properties, bond strength and microstructural evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB)
- Effect of graphite content on the tribological behavior of Al/2SiC/Gr hybrid nano-composites processed via mechanical milling
- Numerical predictions and experimental investigation of the temperature distribution of friction stir welded AA 5059 aluminium alloy joints
- DGM News
- DGM News