Home Technology Austenite to polygonal-ferrite transformation and carbide precipitation in high strength low alloy steel
Article
Licensed
Unlicensed Requires Authentication

Austenite to polygonal-ferrite transformation and carbide precipitation in high strength low alloy steel

  • Xiaosheng Zhou , Ji Dong , Yongchang Liu , Chenxi Liu , Liming Yu , Yuan Huang and Huijun Li
Published/Copyright: January 12, 2017

Abstract

By differential scanning calorimetry measurement and microstructural examination, the effects of cooling rates on the kinetics and microstructure of polygonal ferrite transformation have been investigated in a high strength low alloy steel. The peak temperature of ferrite transformation exhibits an evident dependency on cooling rate. With the cooling rate decreasing, the ferrite fraction corresponding to the maximum transformation rate is decreased, as well as the size of polygonal ferrite grains. More ferrite is nucleated at lower cooling rate. On the basis of the effects of austenite grain size and carbide precipitation on ferrite formation, it is suggested that carbide precipitation plays a more dominant role in the kinetics of ferrite transformation. During austenite–ferrite transformation, the ferrite nucleation still proceeds, and the nucleation would not be saturated by pre-existing nuclei.


*Correspondence address, Yongchang Liu, School of Materials Science & Engineering, Tianjin University, Tianjin 300354, P R China, Tel.: +86-22-87401873, Fax: +86-22-87401873, E-mail:

References

[1] S.K.Dhua, D.Mukerjee, D.S.Sarma: Metall. Mater. Trans. A32 (2001) 2259. 10.1007/s11661-001-0201-zSearch in Google Scholar

[2] P.A.Manohar, T.Chansra: ISIJ Int.38 (1998) 766. 10.2355/isijinternational.38.766Search in Google Scholar

[3] S.Shanmugam, N.K.Ramisetti, R.D.K.Misra, J.Hartmann, S.G.Jansto: Mater. Sci. Eng. A478 (2008) 26. 10.1016/j.msea.2007.06.003Search in Google Scholar

[4] M.C.Zhao, K.Yang, F.R.Xiao, Y.Y.Shan: Mater. Sci. Eng. A355(2003) 126. 10.1016/S0921-5093(03)00074-1Search in Google Scholar

[5] F.R.Xiao, B.Liao, Y.Y.Shan, G.Y.Qiao, Y.Zhong, C.Zhang, K.Yang: Mater. Sci. Eng. A431(2006) 41. 10.1016/j.msea.2006.05.029Search in Google Scholar

[6] S.S.Babu: Curr. Opin. Solid State Mater. Sci.8 (2004) 267. 10.1016/j.cossms.2004.10.001Search in Google Scholar

[7] R.A.Ricks, P.R.Howell, G.S.Barritte: J. Mater. Sci.17 (1982) 732. 10.1007/BF00540369Search in Google Scholar

[8] G.Krauss, S.W.Thompson: ISIJ. Int.35 (1995) 937. 10.2355/isijinternational.35.937Search in Google Scholar

[9] M.Gouné, F.Danoix, J.Ågren, Y.Brechet, C.R.Hutchinson, M.Militzer, G.Purdy, S.van der Zwaag, H.Zurob: Mater. Sci. Eng. R92 (2015) 1. 10.1016/j.mser.2015.03.001Search in Google Scholar

[10] Y.C.Liu, F.Sommer, E.J.Mittemeijer: Metall. Mater. Trans. A39 (2008) 2306. 10.1007/s11661-008-9601-7Search in Google Scholar

[11] B.Vishwanadh, T.S.R.Ch.Murthy, A.Arya, R.Tewari, G.K.Dey: J. Alloys Compd.671 (2016) 424. 10.1016/j.jallcom.2016.02.092Search in Google Scholar

[12] C.Capdevila, F.G.Caballero, C.G.D.Andrés: Mater. Trans.44 (2003) 1087. 10.2320/matertrans.44.1087Search in Google Scholar

[13] B.L.Bodnar, S.S.Hansen: Metall. Mater. Trans. A25 (1994) 66510.1007/BF02665443Search in Google Scholar

[14] X.F.Zhang, P.Han, H.Terasaki, M.Sato, Y.Komizo: J. Mater. Sci. Technol.28 (2012) 241. 10.1016/S1005-0302(12)60025-5Search in Google Scholar

[15] L.Y.Lan, C.L.Qiu, D.W.Zhao, X.H.Gao, L.X.Du: Mater. Sci. Technol.27 (2011) 1657. 10.1179/1743284710Y.0000000026Search in Google Scholar

[16] http://ijmse.iust.ac.ir/article-1-224-en.pdfSearch in Google Scholar

[17] K.Dou, L.T.Meng, Q.Liu, B.Liu, Y.H.Huang: Met. Mater. Int.22 (2016) 349. 10.1007/s12540-016-2676-6Search in Google Scholar

[18] T.Furuhara, J.Yamaguchi, N.Sugita, G.Miyamoto, T.Maki: ISIJ Int.43 (2003) 1630. 10.2355/isijinternational.43.1630Search in Google Scholar

[19] D.Jain, D.Isheim, A.H.Hunter, D.N.Seidman: Metall. Mater. Trans. A47 (2016) 3860. 10.1007/s11661-016-3569-5Search in Google Scholar

[20] E.J.Mittemeijer: Fundamentals of Materials Science, Springer-Verlag, Berlin (2010). 10.1007/978-3-642-10500-5_1Search in Google Scholar

[21] Y.C.Liu, F.Sommer, E.J.Mittemeijer: Acta Mater.54 (2006) 3383. 10.1016/j.actamat.2006.03.029Search in Google Scholar

[22] Y.C.Liu, D.J.Wang, F.Sommer, E.J.Mittemeijer: Acta Mater.56 (2008) 3833. 10.1016/j.actamat.2008.04.015Search in Google Scholar

[23] Y.C.Liu, F.Sommer, E.J.Mittemeijer: Acta Mater.57 (2009) 2858. 10.1016/j.actamat.2009.02.044Search in Google Scholar

[24] X.J.Liang, A.J.Deardo: Metall. Mater. Trans. A45 (2014) 5173. 10.1007/s11661-014-2444-5Search in Google Scholar

[25] D.J.Wang, Y.C.Liu, Y.H.Zhang: J. Mater. Sci.43 (2008) 4876. 10.1007/s10853-008-2709-8Search in Google Scholar

[26] E.A.Brandes, G.B.Brook (Eds.), Smithells Metals Reference Book, 7th edition, Butterworth-Heinemann, Oxford (1992).Search in Google Scholar

Received: 2016-08-23
Accepted: 2016-11-02
Published Online: 2017-01-12
Published in Print: 2017-01-09

© 2017, Carl Hanser Verlag, München

Downloaded on 1.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.111454/html
Scroll to top button