The effect of high Al content on the microstructure and mechanical properties of Mg-xAl alloys processed by equal channel angular pressing
-
Zhiwen Wang
Abstract
In this work, Mg-xAl alloys with an Al content ranging from 10 to 20 wt.% were subjected to equal channel angular pressing (ECAP). The effects of the high Al content on the microstructure and mechanical properties of the alloy before and after ECAP were investigated by means of optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis and tensile testing. The results demonstrated that as the amount of Al in the as-cast Mg-xAl alloys increased, the grain size of the as-cast Mg-xAl alloys decreased, whereas the amount of the Mg17Al12 phase with network structure increased. After ECAP, the network β-Mg17Al12 phase was significantly broken into fine pieces. The fine β-Mg17Al12 granules were precipitated from the α-Mg matrix. The broken β-Mg17Al12 phase in the Mg-15Al alloy exhibited a relatively homogeneous distribution. As the Al content increased, the grain size in the α-Mg-rich area decreased. However, the β-Mg17Al12 size in the α+β two-phase area of the ECAPed Mg-15Al alloy was the smallest among the three alloys. The yield strength of the Mg-xAl alloys increased, whereas the elongation to fracture significantly decreased.
References
[1] N.Tahreen, D.L.Chen, M.Nouri, D.Y.Li: Mater. Sci. Eng. A594 (2014) 235. 10.1016/j.msea.2013.11.078Suche in Google Scholar
[2] F.Chai, D.T.Zhang, W.W.Zhang, Y.Y.Li: Mater. Sci. Eng. A590 (2014) 80. 10.1016/j.msea.2013.10.029Suche in Google Scholar
[3] J.Hirsch, T.Al-Samman: Acta Mater.61 (2013) 818. 10.1016/j.actamat.2012.10.044Suche in Google Scholar
[4] H.X.Wang, W.Liang, Q.Zhao, Y.P.Yin, X.G.Zhao: Rare Met. Mat. Eng.37 (2008) 2004.Suche in Google Scholar
[5] O.Sabokpa, A.Zarei-Hanzaki, H.R.Abedi: Mater. Sci. Eng. A550 (2012) 31. 10.1016/j.msea.2012.03.112Suche in Google Scholar
[6] N.Kashefi, R.Mahmudi: Mater. Des.39 (2012) 200. 10.1016/j.matdes.2012.02.036Suche in Google Scholar
[7] D.Lee: Acta Metall.17 (1969) 1057. 10.1016/0001-6160(69)90051-0Suche in Google Scholar
[8] M.H.Maghsoudi, A.Zarei-Hanzaki, H.R.Abedi: Mater. Sci. Eng. A595 (2014) 99. 10.1016/j.msea.2013.11.095Suche in Google Scholar
[9] S.W.Lee, Y.L.Chen, H.X.Wang, C.F.Yang, J.W.Yeh: Mater. Sci. Eng. A464 (2007) 76. 10.1016/j.msea.2007.01.119Suche in Google Scholar
[10] M.L.Olguín-González, D.Hernández-Silva, M.A.García-Bernal, V.M.Sauce-Rangel: Mater. Sci. Eng. A597 (2014) 82. 10.1016/j.msea.2013.12.027Suche in Google Scholar
[11] J.F.Jiang, Y.Wang, J.J.Qu: Mater. Sci. Eng. A560 (2013) 473. 10.1016/j.msea.2012.09.092Suche in Google Scholar
[12] H.X.Wang, B.Zhou, Y.T.Zhao, K.K.Zhou, W.L.Cheng, W.Liang: Mater. Sci. Eng. A589 (2014) 119. 10.1016/j.msea.2013.09.075Suche in Google Scholar
[13] R.Z.Valiev, T.G.Langdon: Prog. Mater. Sci.51 (2006) 881. 10.1016/j.pmatsci.2006.02.003Suche in Google Scholar
[14] W.J.Kim, C.W.An, Y.S.Kim, S.I.Hong: Scr. Mater.47 (2002) 39. 10.1016/S1359-6462(02)00094-5Suche in Google Scholar
[15] W.J.Kim, S.I.Hong, Y.S.Kim, S.H.Min, H.T.Jeong, J.D.Lee: Acta Mater.51 (2003) 3293. 10.1016/S1359-6454(03)00161-7Suche in Google Scholar
[16] Y.C.Yuan, A.B.Ma, J.H.Jiang, Y.Sun, F.M.Lu, L.Y.Zhang, D.Song: J. Alloys Compd.594 (2014) 182. 10.1016/j.jallcom.2014.01.140Suche in Google Scholar
[17] J.L.Gong, W.Liang, H.X.Wang, X.G.Zhao, L.P.Bian: Rare Metal Mat. Eng.42 (2013) 1800. 10.1016/S1875-5372(14)60008-4Suche in Google Scholar
[18] R.Y.Lapovok: J. Mater. Sci.40 (2005) 341. 10.1007/s10853-005-6088-0Suche in Google Scholar
[19] S.Q.Wang, W.Liang, Y.Wang, L.P.Bian, K.H.Chen: J. Mater. Process. Technol.209 (2009) 3182. 10.1016/j.jmatprotec.2008.07.022Suche in Google Scholar
[20] A.K.Dahle, Y.C.Lee, M.D.Nave, P.L.Schaffer, D.H.St. John: J. Light Met.1 (2001) 61. 10.1016/S1471-5317(00)00007-9Suche in Google Scholar
[21] W.X.Wang, S.Yuan, B.L.Jiang, W.Q.Jie: Chinese Sci. Bull.50 (2005) 1799. 10.1360/982005-396Suche in Google Scholar
[22] Y.H.Wang, Y.B.Zhang, Q.D.Wang, C.J.Ma, W.J.Ding, Y.P.Zhu: Acta Metall. Sin.38 (2002) 539.Suche in Google Scholar
[23] S.S.Shin, E.S.Kim, G.Y.Yeom, J.C.Lee: Mater. Sci. Eng. A532 (2012) 151. 10.1016/j.msea.2011.10.076Suche in Google Scholar
[24] F.H.Chung: J. Appl. Crystallogr.7 (1974) 519. 10.1107/S0021889874010375Suche in Google Scholar
[25] H.B.Luo: MSc thesis, Study on the influences of cooling rate on solidification microstructure of magnesium-aluminum system alloys, Xi'an University of Technology, China (2007).Suche in Google Scholar
[26] Z.X.Feng, F.S.Pan, X.Y.Zhang, A.T.Tang, Q.T.Fu: J. Mater. Eng.2 (2012) 13.Suche in Google Scholar
[27] L.Zhang, Z.Y.Cao, Y.B.Liu, G.H.Su, L.R.Cheng: Mater. Sci. Eng. A508 (2009) 129. 10.1016/j.msea.2008.12.029Suche in Google Scholar
[28] R.Jahadi, M.Sedighi, H.Jahed: Mater. Sci. Eng. A593 (2014) 178. 10.1016/j.msea.2013.11.042Suche in Google Scholar
[29] Z.T.Wang, Y.D.Guan: Metal Plastic Forming Theory, China Machine Press, Beijing, China (2000).Suche in Google Scholar
[30] P.J.Apps, J.R.Bowen, P.B.Prangnell: Acta Mater.51 (2003) 2811. 10.1016/S1359-6454(03)00086-7Suche in Google Scholar
[31] S.Fintova, L.Kunz: J. Mech. Behav. Biomed.42 (2015) 219. 10.1016/j.jmbbm.2014.11.019Suche in Google Scholar PubMed
[32] G.D.Fan, M.Y.Zheng, X.S.Hu, C.Xu, K.Wu, I.S.Golovin: Mater. Sci. Eng. A556 (2012) 588. 10.1016/j.msea.2012.07.031Suche in Google Scholar
[33] J.Stráská, M.Janeček, J.Čížek, J.Stráský, B.Hadzima: Mater. Charact.94 (2014) 69. 10.1016/j.matchar.2014.05.013Suche in Google Scholar
[34] L.Jin: MSc thesis, Study on the microstructure and mechanical properties of magnesium alloy by equal channel angular extrusion, Shanghai Jiao Tong University, China (2006).Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Digital material representation concept applied to investigation of local inhomogeneities during manufacturing of magnesium components for automotive applications
- Austenite to polygonal-ferrite transformation and carbide precipitation in high strength low alloy steel
- Precipitation behavior of carbides in high-carbon martensitic stainless steel
- Enthalpies of mixing in binary liquid alloys of lutetium with 3d metals
- Investigation of the 600 °C isothermal section of the Fe–Al–Ce ternary system
- The effect of high Al content on the microstructure and mechanical properties of Mg-xAl alloys processed by equal channel angular pressing
- Mechanical properties, bond strength and microstructural evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB)
- Effect of graphite content on the tribological behavior of Al/2SiC/Gr hybrid nano-composites processed via mechanical milling
- Numerical predictions and experimental investigation of the temperature distribution of friction stir welded AA 5059 aluminium alloy joints
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Digital material representation concept applied to investigation of local inhomogeneities during manufacturing of magnesium components for automotive applications
- Austenite to polygonal-ferrite transformation and carbide precipitation in high strength low alloy steel
- Precipitation behavior of carbides in high-carbon martensitic stainless steel
- Enthalpies of mixing in binary liquid alloys of lutetium with 3d metals
- Investigation of the 600 °C isothermal section of the Fe–Al–Ce ternary system
- The effect of high Al content on the microstructure and mechanical properties of Mg-xAl alloys processed by equal channel angular pressing
- Mechanical properties, bond strength and microstructural evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB)
- Effect of graphite content on the tribological behavior of Al/2SiC/Gr hybrid nano-composites processed via mechanical milling
- Numerical predictions and experimental investigation of the temperature distribution of friction stir welded AA 5059 aluminium alloy joints
- DGM News
- DGM News