Influence of germanate anomaly on elastic, structural, and optical properties of xNa2O-(99–x)[80GeO2:20PbO]-1Er2O3 lead–germanate glasses
-
Mohd Fauzi Maulud
und Ahmad Kamal Yahya
Abstract
A sodium–lead–germanate glass system, with a composition of xNa2O-((100–y)–x)[80GeO2:20PbO]-yEr2O3 (x = 0–25 mol.%, y = 0, 1 mol.%), was prepared by melt quenching and used to investigate the effect of Na2O and Er2O3 on the germanate anomaly. The structural and optical properties of the glass samples were investigated using X-ray diffraction, Fourier transform infrared, and UV–Vis spectroscopy analyses. Elastic properties of Er2O3-doped glasses (y = 1) were studied by measuring longitudinal and shear velocities through the pulse-echo method at 5 MHz. Based on Fourier transform infrared spectroscopy analysis of Er2O3-doped glasses, the conversion of GeO4 into GeO6 indicates that the glass system possesses the germanate anomaly characteristic but has no density anomaly. Longitudinal, shear, bulk, and Young's moduli (CL, μ, K, and E, respectively) increased to their maximum values at x = 10 mol.% but decreased with increasing amount of Na2O added. This finding reveals the elastic nature of the germanate anomaly. Increase in elastic moduli indicates enhanced network rigidity of the glass system in the germanate anomaly region, where the coordination number increased with the transformation of GeO4 to GeO6. Subsequent decrease in elastic moduli (x > 10 mol.%) denotes weakened network rigidity of the glass system because of enhanced formation of non-bridging oxygen. Furthermore, analysis using bulk compression and ring deformation models reveals the nonlinear trends of Kbc/Ke ratio and average ring size diameter as a result of the germanate anomaly. The anomaly also influenced optical properties of both Er2O3-doped (y = 1) and Er2O3-free (y = 0) glasses, where the optical energy gap (Eopt) decreased with the addition of Na2O up to 10 mol.% and slightly increased with more than 10 mol.% Na2O. By contrast, Urbach energy (EU) and refractive index (n) showed opposite trends to that of Eopt. The behavior of EU indicates changes in defect concentration, which affects Eopt and n.
References
[1] E.Mansour: Physica B: Condens. Matter362 (2005) 88. 10.1016/j.physb.2005.01479Suche in Google Scholar
[2] B.Dutta, N.A.Fahmy, I.L.Pegg: J. Non-Cryst. Solids351 (2005) 1958. 10.1016/j.jnoncrysol.2005.05.005Suche in Google Scholar
[3] G.Berg, A.Ludwig: J. Non-Cryst. Solids170 (1994) 109. 10.1016/0022-3093(94)90111-2Suche in Google Scholar
[4] H.T.Munasinghe, A.Winterstein-Beckmann, C.Schiele, D.Manzani, L.Wondraczek, ShahraamAfshar V., T.M.Monro, H.Ebendorff-Heidepriem: Opt. Mater. Express3 (2013) 1488. 10.1364/ome.3.001488Suche in Google Scholar
[5] G.Bai, L.Tao, K.Li, L.Hu, Y.H.Tsang: Opt. Mater.35 (2013) 1247. 10.1016/j.optmat.2013.01.017Suche in Google Scholar
[6] R.Balda, J.Fernández, M.A.Arriandiaga, J.M.Fdez-Navarro: Opt. Mater.25 (2004) 157. 10.1016/s0925-3467(03)00264-7Suche in Google Scholar
[7] R.T.Amos, G.S.Henderson: J. Non-Cryst. Solids331 (2003) 108. 10.1016/j.jnoncrysol.2003.09.009Suche in Google Scholar
[8] V.C. VeerannaGowda: Physica B: Condens. Matter456 (2015) 298. 10.1016/j.physb.2014.09.004Suche in Google Scholar
[9] G.S.Henderson: J. Non-Cryst. Solids353 (2007) 1695. 10.1016/j.jnoncrysol.2007.02.037Suche in Google Scholar
[10] A.Abd El-Moneim: Mater. Chem. Phys.98 (2006) 261. 10.1016/j.matchemphys.2005.09.016Suche in Google Scholar
[11] M.K.Murthy, J.Ip: Nature201 (1964) 285. 10.1038/201285a0Suche in Google Scholar
[12] E.F.Riebling: J. Chem. Phys.39 (1963) 3022. 10.1063/1.1734549Suche in Google Scholar
[13] G.S.Henderson, R.T.Amos: J. Non-Cryst. Solids328 (2003) 1. 10.1016/s0022-3093(03)00478-2Suche in Google Scholar
[14] G.S.Henderson, L.G.Soltay, H.M.Wang: J. Non-Cryst. Solids356 (2010) 2480. 10.1016/j.jnoncrysol.2010.03.023Suche in Google Scholar
[15] M.Rada, E.Culea, S.Rada, A.Bot, N.Aldea, V.Rednic: J. Non-Cryst. Solids358 (2012) 3129. 10.1016/j.jnoncrysol.2012.08.026Suche in Google Scholar
[16] S.El-Rabaie, T.A.Taha, A.A.Higazy: Physica B: Condens. Matter432 (2014) 40. 10.1016/j.physb.2013.09.020Suche in Google Scholar
[17] S.El-Rabaie, T.A.Taha, A.A.Higazy: Physica B: Condens. Matter429 (2013) 1. 10.1016/j.physb.2013.07.029Suche in Google Scholar
[18] A.O.Ivanov, K.S.Evstropiev: Dokl. Akad. Nauk. SSSR.145 (1962) 797.Suche in Google Scholar
[19] H.A.Sidek, H.R.Bahari, M.K.Halimah, W.M.Yunus: Int. J. Mol. Sci.13 (2012) 4632. 10.3390/ijms13044632Suche in Google Scholar
[20] R.El-Mallawany: Mater. Chem. Phys.53 (1998) 93. 10.1016/S0254-0584(97)02041-5Suche in Google Scholar
[21] T.Rouxel: Comptes Rendus Mécanique334 (2006) 743. 10.1016/j.crme.2006.08.001Suche in Google Scholar
[22] A.Osaka, K.Takahashi, K.Ariyoshi: J. Non-Cryst. Solids70 (1985) 243. 10.1016/0022-3093(85)90323-0Suche in Google Scholar
[23] R.Waesche, R.Brückner: J. Non-Cryst. Solids107 (1989) 309. 10.1016/0022-3093(89)90477-8Suche in Google Scholar
[24] S.Rada, E.Culea, M.Rada: J. Non-Cryst. Solids356 (2010) 1277. 10.1016/j.jnoncrysol.2010.04.020Suche in Google Scholar
[25] E.Culea, L.Pop, M.Bosca, T.Rusu, P.Pascuta, S.Rad: J. Phys. Conf. Ser.183 (2009) 012061. 10.1088/1742-6596/182/1/012061Suche in Google Scholar
[26] E.Culea, L.Pop, M.Bosca: J. Alloys Compd.505 (2010). 754. 10.1016/j.jallcom.2010.06.135Suche in Google Scholar
[27] S.Rada, M.Rada, E.Culea: J. Non-Cryst. Solids357 (2011) 62. 10.1016/j.jnoncrysol.2010.10.013Suche in Google Scholar
[28] R.Vijay, P.R.Babu, B.V.Raghavaiah, P.M.V.Teja, M.Piasecki, N.Veeraiah, D.K.Rao: J. Non-Cryst. Solids386 (2014) 67. 10.1016/j.jnoncrysol.2013.11.035Suche in Google Scholar
[29] S.Rada, E.Culea: J. Non-Cryst. Solids357 (2011) 1724. 10.1016/j.jnoncrysol.2011.01.017Suche in Google Scholar
[30] M.Rada, L.Rus, S.Rada, E.Culea, T.Rusu: Spectrochim. Acta, Part A132 (2014) 533. 10.1016/j.saa.2014.04.195Suche in Google Scholar PubMed
[31] M.Rada, L.Bolundut, M.Pica, M.Zagrai, S.Rada, E.Culea: J. Non-Cryst. Solids365 (2013) 105. 10.1016/j.jnoncrysol.2013.01.024Suche in Google Scholar
[32] A.A.El-Moneim: Mater. Chem. Phys.70 (2001) 340. 10.1016/S0254-0584(00)00519-8Suche in Google Scholar
[33] A.F.Wells: Structure Inorganic Chemistry, Clarendon Press, Oxford (1975).Suche in Google Scholar
[34] M.Khanisanij, H.A.A.Sidek: Adv. Mater. Sci. Eng. (2014) ID 452830. 10.1155/2014/452830Suche in Google Scholar
[35] A.C.Wright: Int. J. Appl. Glass Sci.6 (2015) 45. 10.1111/ijag.12113Suche in Google Scholar
[36] Y.B.Saddeek: J. Non-Cryst. Solids357 (2011) 2920. 10.1016/j.jnoncrysol.2011.03.034Suche in Google Scholar
[37] R.El-Mallawany: Mater. Chem. Phys.60 (1999) 103. 10.1016/S0254-0584(99)00082-6Suche in Google Scholar
[38] Y.B.Saddeek: Mater. Chem. Phys.83 (2004) 222. 10.1016/j.matchemphys.2003.09.051Suche in Google Scholar
[39] Y.D.Yiannopoulos, C.P.E.Varmsamis, E.I.Kamitsos: J. Non-Cryst. Solids293 (2001) 244. 10.1016/S0022-3093(01)00677-9Suche in Google Scholar
[40] J.E.Shelby: Introduction to Glass Science and Technology, 2nd Ed., The Royal Society of Chemistry, Cambridge (2005). 10.1039/9781847551160-00001Suche in Google Scholar
[41] R.El-Mallawany, M.D.Abdalla, I.A.Ahmed: Mater. Chem. Phys.109 (2008) 291. 10.1016/j.matchemphys.2007.11.040Suche in Google Scholar
[42] Y.B.Saddeek, E.R.Shaaban, E.S.Moustafa, H.M.Moustafa: Physica B: Condens. Matter403 (2008) 2399. 10.1016/j.physb.2007.12.027Suche in Google Scholar
[43] D.Linda, J.R.Duclère, T.Hayakawa, M.Dutreilh-Colas, T.Cardinal, A.Mirgorodsky, A.Kabadou, P.Thomas: J. Alloys Compd.561 (2013) 151. 10.1016/j.jallcom.2013.01.172Suche in Google Scholar
[44] J.N.Ayuni, M.K.Halimah, Z.A.Talib, H.A.A.Sidek, W.M.Daud, A.W.ZaidanA.M.Khamirul: Mater. Sci. Eng.17 (2011) 012027. 10.1088/1757-899x/17/1/012027Suche in Google Scholar
[45] N.Elkhoshkhany, A.Rafik, R.El-Mallawany, K.S.H. HumoudSharba: Ceram. Int.4 (2014) 11985. 10.1016/j.ceramint.2014.04.036Suche in Google Scholar
[46] Y.B.Saddeek, I.S.Yahi, K.A.Alya, W.Dobrowolski: Solid State Sci.12 (2010) 1426. 10.1016/j.solidstatesciences.2010.05.023Suche in Google Scholar
[47] V.Kamalaker, G.Upender, Ch.Ramesh, V.Chandra: Spectrochim. Acta, Part A89 (2012) 149. 10.1016/j.saa.2011.12.057Suche in Google Scholar PubMed
© 2016, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Study of plastic deformation mechanisms in TA15 titanium alloy by combination of geometrically necessary and statistically-stored dislocations
- Effects of diffusion alloying on the microstructure and properties of TiC-reinforced Fe-based PM materials
- Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates
- Corrosion behaviour of rolled A356 matrix composite reinforced with ceramic particles
- Experimental investigation of phase equilibria in the Nb–Si–Ta ternary system
- Enthalpy of mixing of liquid Cu–Fe–Hf alloys at 1 873 K
- Synthesis and properties evaluation of β-SiAlON prepared by mechanical alloying followed by different sintering technique
- Influence of germanate anomaly on elastic, structural, and optical properties of xNa2O-(99–x)[80GeO2:20PbO]-1Er2O3 lead–germanate glasses
- Short Communications
- Effects of martensite cold work on the reverse austenite formation
- Synthesis and field-emission characteristics of SiC nanowire forest
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Study of plastic deformation mechanisms in TA15 titanium alloy by combination of geometrically necessary and statistically-stored dislocations
- Effects of diffusion alloying on the microstructure and properties of TiC-reinforced Fe-based PM materials
- Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates
- Corrosion behaviour of rolled A356 matrix composite reinforced with ceramic particles
- Experimental investigation of phase equilibria in the Nb–Si–Ta ternary system
- Enthalpy of mixing of liquid Cu–Fe–Hf alloys at 1 873 K
- Synthesis and properties evaluation of β-SiAlON prepared by mechanical alloying followed by different sintering technique
- Influence of germanate anomaly on elastic, structural, and optical properties of xNa2O-(99–x)[80GeO2:20PbO]-1Er2O3 lead–germanate glasses
- Short Communications
- Effects of martensite cold work on the reverse austenite formation
- Synthesis and field-emission characteristics of SiC nanowire forest
- DGM News
- DGM News