Startseite Dislocation dynamics modeling of plastic deformation in single-crystal copper at high strain rates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dislocation dynamics modeling of plastic deformation in single-crystal copper at high strain rates

  • Arash Hosseinzadeh Delandar , Seyed Masood Hafez Haghighat , Pavel Korzhavyi und Rolf Sandström
Veröffentlicht/Copyright: 3. November 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Tensile deformation of single-crystal copper along [001] orientation is modeled. Single crystal is deformed at three sets of high strain rates, ranging from 103 to 105 s−1, using the three-dimensional dislocation dynamics technique to simulate dislocation microstructure evolution and the resultant macroscopic response. Two initial dislocation configurations consisting of straight dislocations and Frank–Read sources are randomly distributed over the simulation volume with an edge length of 1 μm. For both initial setups, the mechanical response of the single crystal to the external loading demonstrates a considerable effect of strain rate. In addition, strain rate influences dislocation density evolution and consequently development of the dislocation microstructure. At all applied strain rates for both initial dislocation setups, dislocations evolve into a heterogeneous microstructure and this heterogeneity increases with plastic strain and strain rate.


*Correspondence address, Arash Hosseinzadeh Delandar, PhD candidate, Royal Institute of Technology, Department of Materials Science and Engineering, Brinellvägen 23, 10044, Stockholm, Sweden, Tel.: +4687906544, E-mail:

References

[1] W.Tong, R.J.Clifton, S.Huang: J. Mech. Phys. Solids.40 (1992) 1251. 10.1016/0022-5096(92)90015-TSuche in Google Scholar

[2] F.E.Hauser: Exp. Mech.6 (1966) 395. 10.1007/BF02326284Suche in Google Scholar

[3] J.W.Edington: Philos. Mag.19 (1969) 1189. 10.1080/14786436908228644Suche in Google Scholar

[4] F.Dušek, Z.Jasinski, J.Buchar, A.Litwora, A.Piatkowski: J. Phys. B26 (1976) 538. 10.1007/BF01586886Suche in Google Scholar

[5] M.Stelly, R.Dormeval, in: High Velocity Deformation of Solids: Springer, Berlin, Heidelberg (1979) 82. 10.1007/978-3-642-67208-8_7Suche in Google Scholar

[6] P.S.Follansbee, U.F.Kocks, G.Regazzoni: J. Phys. Colloq.46 (1985) C525. 10.1051/jphyscol:1985504Suche in Google Scholar

[7] D.J.Steinberg, S.G.Cochran, M.W.Guinan: J. Appl. Phys.51 (1980) 1498. 10.1063/1.327799Suche in Google Scholar

[8] F.J.Zerilli, R.W.Armstrong: J. Appl. Phys.61 (1987) 1816. 10.1063/1.338024Suche in Google Scholar

[9] P.S.Follansbee, U.F.Kocks: Acta Metall.36 (1988) 81. 10.1016/0001-6160(88)90030-2Suche in Google Scholar

[10] D.L.Preston, D.L.Tonks, D.C.Wallace: J. Appl. Phys.93 (2003) 211. 10.1063/1.1524706Suche in Google Scholar

[11] B.L.Hansen, I.J.Beyerlein, C.A.Bronkhorst, E.K.Cerreta, D.Dennis-Koller: Int. J. Plast.44 (2013) 129. 10.1016/j.ijplas.2012.12.006Suche in Google Scholar

[12] M.A.Shehadeh, H.M.Zbib, T. Diazde la Rubia: Int. J. Plast.21 (2005) 2369. 10.1016/j.ijplas.2004.12.004Suche in Google Scholar

[13] V.V.Bulatov, W.Cai: Computer simulations of dislocations, Oxford University Press, Oxford (2006).10.1093/oso/9780198526148.001.0001Suche in Google Scholar

[14] L.P.Kubin, G.Canova, M.Condat, B.Devincre, V.Pontikis, Y.Bréchet: Solid State Phenom.23–24 (1992) 455. 10.4028/www.scientific.net/SSP.23-24.455Suche in Google Scholar

[15] B.Devincre, L.P.Kubin: Mater. Sci. Eng. A234–236 (1997) 8. 10.1016/S0921-5093(97)00146-9Suche in Google Scholar

[16] H.M.Zbib, M.Rhee, J.P.Hirth: Int. J. Mech. Sci.40 (1998) 113. 10.1016/S0020-7403(97)00043-XSuche in Google Scholar

[17] K.W.Schwarz: J. Appl. Phys.85 (1999) 108. 10.1063/1.369429Suche in Google Scholar

[18] V.Shenoy, R.Kukta, R.Phillips: Phys. Rev. Lett.84 (2000) 1491. 10.1103/PhysRevLett.84.1491Suche in Google Scholar PubMed

[19] G.Monnet, B.Devincre, L.P.Kubin: Acta Mater.52 (2004) 4317. 10.1016/j.actamat.2004.05.048Suche in Google Scholar

[20] Z.Wang, N.Ghoniem, S.Swaminarayan, R.LeSar: J. Comput. Phys.219 (2006) 608. 10.1016/j.jcp.2006.04.005Suche in Google Scholar

[21] A.Arsenlis, W.Cai, M.Tang, M.Rhee, T.Oppelstrup, G.Hommes, T.G.Pierce1, V.V.Bulatov: Simul. Mater. Sci. Eng.15 (2007) 553. 10.1088/0965-0393/15/6/001Suche in Google Scholar

[22] Z.Q.Wang, I.J.Beyerlein, R.Lesar: Philos. Mag.87 (2007) 2263. 10.1080/14786430601153422Suche in Google Scholar

[23] A.Roos, J.T.De Hosson, E.Van der Giessen: Comput. Mater. Sci.20 (2001) 19. 10.1016/S0927-0256(00)00118-XSuche in Google Scholar

[24] A.Arsenlis, M.Rhee, G.Hommes, R.Cook, J.Marian: Acta Mater.60 (2012) 3748. 10.1016/j.actamat.2012.03.041Suche in Google Scholar

[25] H.M.Zbib, T. Diazde la Rubia: Int. J. Plast.18 (2002) 1133. 10.1016/S0749-6419(01)00044-4Suche in Google Scholar

[26] Z.Q.Wang, I.J.Beyerlein, R.Lesar: Int. J. Plast.25 (2009) 26. 10.1016/j.ijplas.2008.01.006Suche in Google Scholar

[27] B.Zhang, V.P.W.Shim: Acta Mater.58 (2010) 6810. 10.1016/j.actamat.2010.09.009Suche in Google Scholar

[28] K.Morii, H.Mecking, Y.Nakayama: Acta Metall.33 (1985) 379. 10.1016/0001-6160(85)90080-XSuche in Google Scholar

[29] J.C.Huang, G.T.Gray: Acta Metall.37 (1989) 3335. 10.1016/0001-6160(89)90206-XSuche in Google Scholar

[30] A.E.Mayer, E.N.Borodin, P.N.Mayer: Int. J. Plast.51 (2013) 188. 10.1016/j.ijplas.2013.05.005Suche in Google Scholar

[31] Z.Q.Wang, I.J.Beyerlein, R.LeSar: Philos. Mag.88 (2008) 1321. 10.1080/14786430802129833Suche in Google Scholar

[32] M.A.Shehadeh, H.M.Zbib, T. DiazDe La Rubia: Philos. Mag.85 (2005) 1667. 10.1080/14786430500036470Suche in Google Scholar

Received: 2016-05-02
Accepted: 2016-08-11
Published Online: 2016-11-03
Published in Print: 2016-11-10

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111433/html
Button zum nach oben scrollen