Home Fabrication of 3D porous MoS2–GO nanocomposite monolith as a promising adsorbent
Article
Licensed
Unlicensed Requires Authentication

Fabrication of 3D porous MoS2–GO nanocomposite monolith as a promising adsorbent

  • Hongkun Xia , Tianhao Ji , You Wu and Yongle Wu
Published/Copyright: November 3, 2016
Become an author with De Gruyter Brill

Abstract

Three-dimensional (3D) nanocomposite monolith containing MoS2 nanoflakes, graphene oxide (GO) and amorphous SiO2 was fabricated through a simple mixing process and hydrothermal treatment. Compared with GO monolith prepared under identical conditions, the MoS2–GO monolith had larger specific surface area, smaller pore diameter, as well as much higher adsorption capacity for Cu2+ and Rhodamine B. Introducing amorphous SiO2 into the end monolith by using tetraethyl orthosilicate as a reactant in the synthesis reduced shrinkage and produced a greater number of large pores (>1 μm pore diameter) in the monolith. The specific surface area and pore diameter of the MoS2–GO monolith were 321.4 m2 g−1 and 11.71 nm, respectively. The higher adsorption capacity was ascribed to the presence of many S atoms in the MoS2 nanoflakes inside the monolith.


*Correspondence address, Prof. Dr. Tianhao Ji, College of Science, Beijing Technology and Business University, Beijing 100048, China, Tel.: +86 10 68985545, E-mail: ,

References

[1] A.K.Geim, K.S.Novoselov: Nat. Mater.6 (2007) 183. 10.1038/nmat1849Search in Google Scholar

[2] R.R.Nair, P.Blake, A.N.Grigorenko, K.S.Novoselov, T.J.Booth, T.Stauber, N.M.R.Peres, A.K.Geim: Science320 (2008) 1308. 10.1126/science.1156965Search in Google Scholar

[3] W.B.Choi, I.Lahiri, R.Seelaboyina, Y.S.Kang: Crit. Rev. Solid State Mater. Sci.35 (2010) 52. 10.1080/10408430903505036Search in Google Scholar

[4] R.Muszynski, B.Seger, P.V.Kamat: J. Phys. Chem. C112 (2008) 5263. 10.1021/jp800977bSearch in Google Scholar

[5] X.Yang, X.Zhang, Y.Ma, Y.Huang, Y.Wang, Y.Chen: J. Mater. Chem.19 (2009) 2710. 10.1039/b821416fSearch in Google Scholar

[6] C.Nethravathi, T.Nisha, N.Ravishankar, C.Shivakumara, M.Rajamathi: Carbon47 (2009) 2054. 10.1016/j.carbon.2009.03.055Search in Google Scholar

[7] T.H.Ji, M.Sun, P.Han: New Carbon Mater.28 (2013) 401. 1007-8827(2013)06-0401-07Search in Google Scholar

[8] Y.T.Kim, J.H.Han, B.H.Hong, Y.U.Kwon: Adv. Mater.22 (2010) 515. 10.1002/adma.200902736Search in Google Scholar PubMed

[9] A.P.Yu, P.Ramesh, M.E.Itkis, E.Bekyarova, R.C.Haddon: J. Phys. Chem. C111 (2007) 7565. 10.1021/jp071761sSearch in Google Scholar

[10] K.F.Mak, C.Lee, J.Hone, J.Shan, T.F.Heinz: Phys. Rev. Lett.105 (2010) 136805. 10.1103/PhysRevLett.105.136805Search in Google Scholar PubMed

[11] C.G.Lee, Q.Y.Li, W.Kalb, X.Z.Liu, H.Bergen, R.W.Carpick, J.Hone: Science328 (2010) 76. 10.1126/science.1184167Search in Google Scholar PubMed

[12] R.Ganatra, Q.Zhang: ACS Nano8 (2014) 4074. 10.1021/nn405938zSearch in Google Scholar PubMed

[13] X.S.Zhou, L.J.Wan, Y.G.Guo: Chem. Commun.49 (2013) 1838. 10.1039/C3CC38780ASearch in Google Scholar PubMed

[14] K.Chang, W.X.Chen: ACS Nano5 (2011) 4720. 10.1021/nn200659wSearch in Google Scholar PubMed

[15] G.Eda, H.Yamaguchi, D.Voiry, T.Fujita, M.W.Chen, M.Chhowalla: Nano Lett.11 (2011) 5111. 10.1021/nl201874wSearch in Google Scholar PubMed

[16] T.H.Ji, Y.Y.Hua, M.Sun, N.Ma: Carbon54 (2013) 412. 10.1016/j.carbon.2012.11.057Search in Google Scholar

[17] T.H.Ji, M.Sun, L.F.Zou, N.Ma: Mater. Lett.120 (2014) 30. 10.1016/j.matlet.2014.01.035Search in Google Scholar

[18] L.J.Cao, S.B.Yang, W.Gao, Z.Liu, Y.J.Gong, L.L.Ma, G.Shi, S.D.Lei, Y.H.Zhang, S.T.Zhang, R.Vajtai, P.M.Ajayan: Small9 (2013) 2905. 10.1002/smll.201203164Search in Google Scholar PubMed

[19] Z.S.Wu, W.C.Ren, L.B.Gao, Z.P.Chen, B.L.Liu, D.M.Tang, B.Yu, C.B.Jiang, H.M.Cheng: ACS Nano3 (2009) 411. 10.1021/nn900020uSearch in Google Scholar PubMed

[20] G.G.Wang, M.Shui, L.H.Yue: Chin. J. Inorg. Chem.18 (2002) 991.Search in Google Scholar

[21] S.S.Liu, X.B.Zhang, H.Shao, J.Xu, F.Y.Chen, Y.Feng: Mater. Lett.73 (2012) 223. 10.1016/j.matlet.2012.01.024Search in Google Scholar

[22] C.G.Lee, H.G.Yan, L.E.Brus, T.F.Heinz, J.Hone, S.M.Ryu: ACS Nano4 (2010) 2695. 10.1021/nn100197uSearch in Google Scholar PubMed

[23] H.Li, Q.Zhang, C.C.R.Yap, B.K.Tay, T.H.T.Edwin, A.Olivier, D.Baillargeat: Adv. Funct. Mater.22 (2012) 1385. 10.1002/adfm.201102111Search in Google Scholar

[24] R.Narula, S.Reich: Phys. Rev. B78 (2008) 165422. PhysRev B.78.165422. 10.1103/Search in Google Scholar

[25] F.Tuinstra, J.L.Koenig: J. Chem. Phys.53 (1970) 1126. 10.1063/1.1674108Search in Google Scholar

[26] S.Park, J.H.An, J.R.Potts, A.Velamakanni, S.Murali, R.S.Ruoff: Carbon49 (2011) 3019. 10.1016/j.carbon.2011.02.071Search in Google Scholar

[27] S.Tongay, J.Zhou, C.Ataca, J.Liu, J.S.Kang, T.S.Matthews, L.You, J.B.Li, J.C.Grossman, J.Q.Wu: Nano Lett.13 (2013) 2831. 10.1021/nl4011172Search in Google Scholar PubMed

[28] T.H.Ji, L.F.Zou, H.K.Xia, Y.Wu: Nano11 (2016) 1650053. 10.1142/S1793292016500533Search in Google Scholar

Received: 2016-02-25
Accepted: 2016-07-12
Published Online: 2016-11-03
Published in Print: 2016-11-10

© 2016, Carl Hanser Verlag, München

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111427/html
Scroll to top button