Abstract
The aim of this paper was to obtain the regression equation of the bonding strength of sprayed coatings vs. acoustic emission (AE) signal. FeCrBSi coating, Al2O3-40 wt.% TiO2 (AT40) coating and Al2O3 coating were prepared using an atmospheric plasma spraying system. The microstructures and properties of the coatings were characterized. The coatings exhibited typical laminate structure with low porosity and good bonding interface. The AE signals during indentation testing were abstracted and investigated. AE energy was more sensitive to the coating cracking failure than AE amplitude. Moreover, the energy of AE burst signal had a close positive relationship with coating bonding strength. The distribution characteristic of AE peak energy was discussed based on the Weibull distribution. The best regression equations for the three coatings were obtained to predict the bonding strengths of sprayed coatings based on AE burst signal energy for similar coating/substrate systems.
References
[1] L.N. Wang, J.L. Luo: Mater. Charact. 62 (2011) 1076. DOI:10.1016/j.matchar.2011.01.01010.1016/j.matchar.2011.01.010Search in Google Scholar
[2] R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Haug, J.P. Michler: Thin Solid Films 469–470 (2004) 206.10.1016/j.tsf.2004.08.096Search in Google Scholar
[3] J.V. Stebut, F. Lapostolle, M. Bucsa, H. Vallen: Surf. Coat. Technol. 116–119 (1999) 160.10.1016/S0257-8972(99)00211-XSearch in Google Scholar
[4] L.P. Zhou, M.P. Wang, R. Wang, Z. Li, J.J. Zhu, K. Peng, D.Y. Li, S.L. Li: Trans. Nonferrous Met. Soc. China 18 (2008) 372. DOI:10.1016/S1003–6326(08)60027–810.1016/S1003–63260860027–8Search in Google Scholar
[5] C. Guerra, C.J. Schwartz: Tribol. Lett. 44 (2011) 223. DOI:10.1007/s11249-011-9840-410.1007/s11249-011-9840-4Search in Google Scholar
[6] R. Ahmed, N.H. Faisal, A.M. Paradowska, M.E. Fitzpatrick: J. Therm. Spray. Technol. 21 (2012) 23. DOI:10.1007/s11666-011-9680-710.1007/s11666-011-9680-7Search in Google Scholar
[7] P. Ctibor, R. Lechnerova, V. Benes: Mater. Charact. 56 (2006) 297. DOI:10.1016/j.matchar.2005.11.01610.1016/j.matchar.2005.11.016Search in Google Scholar
[8] C.J. Li, G.J. Yang, C.X. Li: J. Therm. Spray. Technol. 22 (2013) 192. DOI:10.1007/s11666-012-9864-910.1007/s11666-012-9864-9Search in Google Scholar
[9] C.K. Tan, P. Irving, D. Mba: Mech. Syst. Sig. Process. 21 (2007) 208. DOI:10.1016/j.ymssp.2005.09.01510.1016/j.ymssp.2005.09.015Search in Google Scholar
[10] B. Eftekharnejad, D. Mba: Appl. Acoust. 70 (2009) 547. DOI:10.1016/j.apacoust.2008.07.00610.1016/j.apacoust.2008.07.006Search in Google Scholar
[11] F. Andrew, P. Nicholas, W.F.R. Jonathan: Eng. Geol. 116 (2010) 139. DOI:10.1016/j.enggeo.2010.08.00310.1016/j.enggeo.2010.08.003Search in Google Scholar
[12] P.R. Simon, D. Thierry: Int. J. Approximate Reasoning 35 (2004) 1. DOI:10.1016/S0888-613X(03)00056-210.1016/S0888-613X(03)00056-2Search in Google Scholar
[13] X.C. Zhang, B.S. Xu, Y.X. Wu, F.Z. Xuan, S.T. Tu: Appl. Surf. Sci. 254 (2008) 3879. DOI:10.1016/j.apsusc.2007.10.05210.1016/j.apsusc.2007.10.052Search in Google Scholar
[14] D.W. Schwach, Y.B. Guo: Int. J. Fatigue 28 (2006) 1838. DOI:10.1016/j.ijfatigue.2005.12.00210.1016/j.ijfatigue.2005.12.002Search in Google Scholar
[15] R. Unnthorsson, T.P. Runarsson, M.T. Jonsson: Int. J. Fatigue 30 (2008) 11. DOI:10.1016/j.ijfatigue.2007.02.02410.1016/j.ijfatigue.2007.02.024Search in Google Scholar
[16] J.R. Ge, K.J. Deng, W.Q. Cai, J.G. Yu, X.Q. Liu, J.B. Zhou: J. Colloid Interf. Sci. 401 (2013) 34. DOI:10.1016/j.jcis.2013.03.02810.1016/j.jcis.2013.03.028Search in Google Scholar PubMed
[17] J. Tao, X.Z. Guo, Z.D. Huang, H.B. Liu, T. Wang: Nucl. Eng. Des. 259 (2013) 65. DOI:10.1016/j.nucengdes.2013.02.04110.1016/j.nucengdes.2013.02.041Search in Google Scholar
[18] J.S. Kwak, M.K. Ha: J. Mater. Process. Technol. 147 (2004) 65. DOI:10.1016/j.jmatprotec.2003.11.01610.1016/j.jmatprotec.2003.11.016Search in Google Scholar
[19] M. Ahadi, M.S. Bakhtiar: Appl. Acoust. 71 (2010) 634. DOI:10.1016/j.apacoust.2010.02.00610.1016/j.apacoust.2010.02.006Search in Google Scholar
[20] L. Prchlik, J. Pisacka, S. Sampath: Mat. Sci. Eng. A 360 (2003) 264. DOI:10.1016/S0921-5093(03)00414-310.1016/S0921-5093(03)00414-3Search in Google Scholar
[21] B.R. Lawn, Y. Deng, P. Miranda, A. Pajares, H. Chai, D.K. Kim: J. Mater. Res. 17 (2002) 3019. DOI:10.1557/JMR.2002.044010.1557/JMR.2002.0440Search in Google Scholar
[22] A. Suyuthi, B.J. Leira, K. Riska: Struct. Saf. 40 (2013) 1. DOI:10.1016/j.strusafe.2012.09.00310.1016/j.strusafe.2012.09.003Search in Google Scholar
[23] N. Ganesan, J.B. Raj, A.P. Shashikala: Constr. Build. Mater. 44 (2013) 7. 10.1016/j.conbuildmat.2013.02.077Search in Google Scholar
[24] A. Barabadi: Electr. Pow. Syst. Res. 101 (2013) 96. DOI:10.1016/j.epsr.2013.03.01010.1016/j.epsr.2013.03.010Search in Google Scholar
[25] J. Mata: Eng. Struct. 33 (2011) 903. DOI:10.1016/j.engstruct.2010.12.01110.1016/j.engstruct.2010.12.011Search in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences