Home Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
Article
Licensed
Unlicensed Requires Authentication

Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal

  • Yanan Song , Binshi Xu , Haidou Wang EMAIL logo , Ming Liu and Zhongyu Piao
Published/Copyright: October 27, 2021
Become an author with De Gruyter Brill

Abstract

The aim of this paper was to obtain the regression equation of the bonding strength of sprayed coatings vs. acoustic emission (AE) signal. FeCrBSi coating, Al2O3-40 wt.% TiO2 (AT40) coating and Al2O3 coating were prepared using an atmospheric plasma spraying system. The microstructures and properties of the coatings were characterized. The coatings exhibited typical laminate structure with low porosity and good bonding interface. The AE signals during indentation testing were abstracted and investigated. AE energy was more sensitive to the coating cracking failure than AE amplitude. Moreover, the energy of AE burst signal had a close positive relationship with coating bonding strength. The distribution characteristic of AE peak energy was discussed based on the Weibull distribution. The best regression equations for the three coatings were obtained to predict the bonding strengths of sprayed coatings based on AE burst signal energy for similar coating/substrate systems.


Dr. Haidou Wang National Key Laboratory for Remanufacturing Academy of Armored Forces Engineering Beijing Fengtai District Beijing, 100072 China Tel.: +86-10-66718475 Fax: +86-10-66718475

References

[1] L.N. Wang, J.L. Luo: Mater. Charact. 62 (2011) 1076. DOI:10.1016/j.matchar.2011.01.01010.1016/j.matchar.2011.01.010Search in Google Scholar

[2] R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Haug, J.P. Michler: Thin Solid Films 469–470 (2004) 206.10.1016/j.tsf.2004.08.096Search in Google Scholar

[3] J.V. Stebut, F. Lapostolle, M. Bucsa, H. Vallen: Surf. Coat. Technol. 116–119 (1999) 160.10.1016/S0257-8972(99)00211-XSearch in Google Scholar

[4] L.P. Zhou, M.P. Wang, R. Wang, Z. Li, J.J. Zhu, K. Peng, D.Y. Li, S.L. Li: Trans. Nonferrous Met. Soc. China 18 (2008) 372. DOI:10.1016/S1003–6326(08)60027–810.1016/S1003–63260860027–8Search in Google Scholar

[5] C. Guerra, C.J. Schwartz: Tribol. Lett. 44 (2011) 223. DOI:10.1007/s11249-011-9840-410.1007/s11249-011-9840-4Search in Google Scholar

[6] R. Ahmed, N.H. Faisal, A.M. Paradowska, M.E. Fitzpatrick: J. Therm. Spray. Technol. 21 (2012) 23. DOI:10.1007/s11666-011-9680-710.1007/s11666-011-9680-7Search in Google Scholar

[7] P. Ctibor, R. Lechnerova, V. Benes: Mater. Charact. 56 (2006) 297. DOI:10.1016/j.matchar.2005.11.01610.1016/j.matchar.2005.11.016Search in Google Scholar

[8] C.J. Li, G.J. Yang, C.X. Li: J. Therm. Spray. Technol. 22 (2013) 192. DOI:10.1007/s11666-012-9864-910.1007/s11666-012-9864-9Search in Google Scholar

[9] C.K. Tan, P. Irving, D. Mba: Mech. Syst. Sig. Process. 21 (2007) 208. DOI:10.1016/j.ymssp.2005.09.01510.1016/j.ymssp.2005.09.015Search in Google Scholar

[10] B. Eftekharnejad, D. Mba: Appl. Acoust. 70 (2009) 547. DOI:10.1016/j.apacoust.2008.07.00610.1016/j.apacoust.2008.07.006Search in Google Scholar

[11] F. Andrew, P. Nicholas, W.F.R. Jonathan: Eng. Geol. 116 (2010) 139. DOI:10.1016/j.enggeo.2010.08.00310.1016/j.enggeo.2010.08.003Search in Google Scholar

[12] P.R. Simon, D. Thierry: Int. J. Approximate Reasoning 35 (2004) 1. DOI:10.1016/S0888-613X(03)00056-210.1016/S0888-613X(03)00056-2Search in Google Scholar

[13] X.C. Zhang, B.S. Xu, Y.X. Wu, F.Z. Xuan, S.T. Tu: Appl. Surf. Sci. 254 (2008) 3879. DOI:10.1016/j.apsusc.2007.10.05210.1016/j.apsusc.2007.10.052Search in Google Scholar

[14] D.W. Schwach, Y.B. Guo: Int. J. Fatigue 28 (2006) 1838. DOI:10.1016/j.ijfatigue.2005.12.00210.1016/j.ijfatigue.2005.12.002Search in Google Scholar

[15] R. Unnthorsson, T.P. Runarsson, M.T. Jonsson: Int. J. Fatigue 30 (2008) 11. DOI:10.1016/j.ijfatigue.2007.02.02410.1016/j.ijfatigue.2007.02.024Search in Google Scholar

[16] J.R. Ge, K.J. Deng, W.Q. Cai, J.G. Yu, X.Q. Liu, J.B. Zhou: J. Colloid Interf. Sci. 401 (2013) 34. DOI:10.1016/j.jcis.2013.03.02810.1016/j.jcis.2013.03.028Search in Google Scholar PubMed

[17] J. Tao, X.Z. Guo, Z.D. Huang, H.B. Liu, T. Wang: Nucl. Eng. Des. 259 (2013) 65. DOI:10.1016/j.nucengdes.2013.02.04110.1016/j.nucengdes.2013.02.041Search in Google Scholar

[18] J.S. Kwak, M.K. Ha: J. Mater. Process. Technol. 147 (2004) 65. DOI:10.1016/j.jmatprotec.2003.11.01610.1016/j.jmatprotec.2003.11.016Search in Google Scholar

[19] M. Ahadi, M.S. Bakhtiar: Appl. Acoust. 71 (2010) 634. DOI:10.1016/j.apacoust.2010.02.00610.1016/j.apacoust.2010.02.006Search in Google Scholar

[20] L. Prchlik, J. Pisacka, S. Sampath: Mat. Sci. Eng. A 360 (2003) 264. DOI:10.1016/S0921-5093(03)00414-310.1016/S0921-5093(03)00414-3Search in Google Scholar

[21] B.R. Lawn, Y. Deng, P. Miranda, A. Pajares, H. Chai, D.K. Kim: J. Mater. Res. 17 (2002) 3019. DOI:10.1557/JMR.2002.044010.1557/JMR.2002.0440Search in Google Scholar

[22] A. Suyuthi, B.J. Leira, K. Riska: Struct. Saf. 40 (2013) 1. DOI:10.1016/j.strusafe.2012.09.00310.1016/j.strusafe.2012.09.003Search in Google Scholar

[23] N. Ganesan, J.B. Raj, A.P. Shashikala: Constr. Build. Mater. 44 (2013) 7. 10.1016/j.conbuildmat.2013.02.077Search in Google Scholar

[24] A. Barabadi: Electr. Pow. Syst. Res. 101 (2013) 96. DOI:10.1016/j.epsr.2013.03.01010.1016/j.epsr.2013.03.010Search in Google Scholar

[25] J. Mata: Eng. Struct. 33 (2011) 903. DOI:10.1016/j.engstruct.2010.12.01110.1016/j.engstruct.2010.12.011Search in Google Scholar

Received: 2014-04-08
Accepted: 2014-09-24
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111169/pdf
Scroll to top button