Abstract
This paper presents experimental results on intermittent electromagnetic radiation during plastic deformation of Cu – Ni alloys under tension and compression modes of deformation. On the basis of the nature of electromagnetic radiation signals, oscillatory or exponential, results show that the compression increases the viscous coefficient of Cu – Ni alloys during plastic deformation. Increasing the percentage of solute atoms in Cu – Ni alloys makes electromagnetic radiation strength higher under tension. The electromagnetic radiation emission occurs at smaller strains under compression showing early onset of plastic deformation. This is attributed to the role of high core region tensile residual stresses in the rolled Cu – Ni alloy specimens in accordance with the Bauschinger effect. The distance between the apexes of the dead metal cones during compression plays a significant role in electromagnetic radiation parameters. The dissociation of edge dislocations into partials and increase in internal stresses with increase in solute percentage in Cu – Ni alloys under compression considerably influences the electromagnetic radiation frequency.
References
[1] F.R.N. Nabarro: Theory of Crystal Dislocations, 1st Ed. Clarendon Press, Oxford (1967).Search in Google Scholar
[2] A. Misra: Nature 254 (1975) 133. DOI:10.1038/254133a010.1038/254133a0Search in Google Scholar
[3] A. Misra: Appl. Phys. 16 (1978) 195. DOI:10.1007/BF0093038710.1007/BF00930387Search in Google Scholar
[4] A.A. Tudik, N.P. Valuev: Sov. Tech. Phys. Lett. 6 (1980) 37.Search in Google Scholar
[5] V. Jagasivamani, K.J. Iyer: Mater. Lett. 6 (1988) 418. DOI:10.1016/0167-577X(88)90043-210.1016/0167-577X(88)90043-2Search in Google Scholar
[6] J.T. Dickinson, L.C. Jensen, S.K. Bhattacharya: J. Vac. Sci. Technol. 3 (1985) 1398. DOI:10.1116/1.57278810.1116/1.572788Search in Google Scholar
[7] W. Brown, M. Schmidt, K. Calahan: The 14th APS Topical Conference on Shock Compression of Condensed Matter, Baltimore, MD (2005).Search in Google Scholar
[8] M.I. Molotskii: Sov. Tech. Phys. Lett. 6 (1980) 22.Search in Google Scholar
[9] A. Misra, S. Ghosh: Indian J. Pure Appl. Phys. 18 (1980) 851.Search in Google Scholar
[10] A. Misra, A. Kumar: Int. J. Fract. 127 (2004) 387. DOI:10.1023/B:FRAC.0000037676.32062.cb10.1023/B:FRAC.0000037676.32062.cbSearch in Google Scholar
[11] V.S. Chauhan, A. Misra: J. Mater. Sci. 43 (2008) 5634. DOI:10.1007/s10853-008-2590-510.1007/s10853-008-2590-5Search in Google Scholar
[12] R. Singh, S.P. Lal, A. Misra: Appl. Phys. A 117 (2014) 1203.10.1007/s00339-014-8509-xSearch in Google Scholar
[13] S.K. Mishra, V. Sharma, A. Misra: Int. J. Mater. Res. 105 (2014) 265. DOI:10.3139/146.11101410.3139/146.111014Search in Google Scholar
[14] B. Srilakshmi, A. Misra: J. Mater. Sci. 40 (2005) 6079. DOI:10.1007/s10853-005-1293-410.1007/s10853-005-1293-4Search in Google Scholar
[15] A.A. Vorob’ev: Defektoskopiya (USSR) 13 (1977) 128.Search in Google Scholar
[16] V. Frid, A. Rabinovitch, D. Bahat: Phys. Lett. A 356 (2006) 160. DOI:10.1016/j.physleta.2006.03.02410.1016/j.physleta.2006.03.024Search in Google Scholar
[17] K. Fukui, S. Okubo, T. Terashima: Rock Mech. Rock Eng. 38 (2005) 411. DOI:10.1007/s00603-005-0046-710.1007/s00603-005-0046-7Search in Google Scholar
[18] A. Lavrov: Strain 41 (2005) 135. DOI:10.1111/j.1475-1305.2005.00233.x10.1111/j.1475-1305.2005.00233.xSearch in Google Scholar
[19] Ya.I. Burak, V.F. Kondrat, O.R. Hrytsyna: Mater. Sci. 43 (2007) 449. DOI:10.1007/s11003-007-0054-810.1007/s11003-007-0054-8Search in Google Scholar
[20] M. Krumbholz, M. Bock, S. Burchardt, U. Kelka, A. Vollbrecht: Solid Earth 3 (2012) 401. DOI:10.5194/se-3-401-201210.5194/se-3-401-2012Search in Google Scholar
[21] V. Hadjicontis, C. Mavromatou, D. Mastrogiannis, T.N. Antsygina, K.A. Chishko: J. Appl. Phys. 110 (2011) 024907. DOI:10.1063/1.360824710.1063/1.3608247Search in Google Scholar
[22] A. Carpinteri, G. Lacidogna, A. Manuello, G. Niccolini, A. Schiavi, A. Agosto: Exp. Tech. 36 (2012) 53. DOI:10.1111/j.1747-1567.2011.00709.x10.1111/j.1747-1567.2011.00709.xSearch in Google Scholar
[23] G. Lacidogna, A. Carpinteri, A. Manuello, G. Durin, A. Schiavi, G. Niccolini, A. Agosto: Strain 47 (2) (2011) 144. DOI:10.1111/j.1475-1305.2010.00750.x10.1111/j.1475-1305.2010.00750.xSearch in Google Scholar
[24] A. Carpinteri, F. Cardone, G.Lacidogna: Exp. Mech. 50 (2010) 1235. DOI:10.1007/s11340-009-9325-710.1007/s11340-009-9325-7Search in Google Scholar
[25] A. Carpinteri, G. Lacidogna, O. Borla, A. Manuello, G. Niccolini: Sadhana 37 (2012) 59. DOI:10.1007/s12046-012-0066-410.1007/s12046-012-0066-4Search in Google Scholar
[26] A. Widom, J. Swain, Y.N. Srivastava: J. Phys. G: Nucl. Part. Phys. 40 (2013) 15006. DOI:10.1088/0954-3899/40/1/01500610.1088/0954-3899/40/1/015006Search in Google Scholar
[27] J. Bohlen, P. Dobronˇ, K. Hantzsche, D. Letzig, F. Chmelík, K.U. Kainer: Int. J. Mater. Res. 100 (2009) 790. DOI:10.3139/146.11011410.3139/146.110114Search in Google Scholar
[28] P. Dobronˇ, F. Chmelík, J. Bohlen, K. Hantzsche, D. Letzig, K.U. Kainer: Int. J. Mater. Res. 100 (2009) 888. DOI:10.3139/146.11011510.3139/146.110115Search in Google Scholar
[29] H. Biermann, A. Vinogradov, O. Hartmann: Z. Metallkd. 93 (2002) 719. DOI:10.3139/146.02071910.3139/146.020719Search in Google Scholar
[30] A. Misra, R.C. Prasad, V.S. Chauhan, B. Srilakshmi: Int. J. Fract. 145 (2007) 99. DOI:10.1007/s10704-007-9107-010.1007/s10704-007-9107-0Search in Google Scholar
[31] A. Misra, R.C. Prasad, V.S. Chauhan, R. Kumar: Mech. Mater. 42 (2010) 505. DOI:10.1016/j.mechmat.2010.01.00510.1016/j.mechmat.2010.01.005Search in Google Scholar
[32] V.S. Chauhan, A. Misra: Int. J. Mater. Res. 101 (2010) 857. DOI:10.3139/146.11035510.3139/146.110355Search in Google Scholar
[33] R.A.C. Slater: Engineering Plasticity, McMillan Press Ltd, London, (1977).10.1007/978-1-349-02160-4Search in Google Scholar
[34] J.P. Holman: Experimental Methods for Engineers, 4th Ed., McGraw Hill, New York (1984).Search in Google Scholar
[35] S. Haykin, V.B. Van: Signal and Systems, John Wiley, Singapore (2002).Search in Google Scholar
[36] L. Kubin, B. Devincre, T. Hoc: Int. J. Mater. Res. 100 (2009) 1411. DOI:10.3139/146.11019110.3139/146.110191Search in Google Scholar
[37] R.W.K. Honeycombe: The Plastic Deformation of Metals, Edward Arnold (Publishers) Ltd., London (1985).Search in Google Scholar
[38] A.H. Cottrell: Proc. R. Soc. London A276 (1963) 1. DOI:10.1098/rspa.1963.018810.1098/rspa.1963.0188Search in Google Scholar
[39] U. Messerschmidt: Dislocation Dynamics During Plastic Deformation, Springer-Verlag, Berlin Heidelberg (2010). DOI:10.1007/978-3-642-03177-910.1007/978-3-642-03177-9Search in Google Scholar
[40] R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th Ed., John Wiley & Sons Inc., Hoboken, NJ, USA (1996).Search in Google Scholar
© 2015 Carl Hanser Verlag GmbH & Co. KG
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences
Articles in the same Issue
- Frontmatter
- Original Contributions
- Microstructures of magnetron sputtered Fe–Au thin films
- Phase-field simulation of diffusion-controlled coarsening kinetics of γ’ phase in Ni–Al alloy
- Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy
- Structural, optical and magnetic properties of nanocrystalline zinc ferrite particles from glycine assisted combustion: Effect of Sr2+ dopant
- Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu–Ni alloys
- Effect of isothermal quenching methods on impact toughness and wear resistance in high boron steel
- Wear behaviour of Al/(Al2O3 + ZrB2 + TiB2) hybrid composites fabricated by hot pressing
- Regression analysis of bonding strength of sprayed coatings based on acoustic emission signal
- Effect of substrates on covalent surface modification of graphene using photosensitive functional group
- Short Communications
- Investigation of optimum nucleation temperature and heating rate of cordierite glass-ceramics
- The influence of process parameters on the preparation of CaF2@Al(OH)3 composite powder via heterogeneous nucleation
- Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze for conductive parts
- The influence of addition of citric acid on the physical properties of metallic oxide nanorods via Sol-Gel route preparation
- Notifications
- People
- DGM News
- Conferences